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HARRIS OPERATORS 

BY 

S. R. F O G U E L  

ABSTRACT 

A method is constructed which leads to a proof for both the "zero-two" law, 
and the Ornstein-M6tivier-Brunel Theorem for Harris operators. For the proof 
it is not necessary to assume that the measure space is measurable and the 
operator need not be given by a transition probability. We strove to make these 
notes self-contained. 

In these notes we at tempt to describe, in a self-contained fashion, the theory 

of Harris  operators.  In particular we shall prove here the "Orns te in -  

M6tivier-Brunel  T h e o r e m "  and the "zero- two"  law. 

Since the notes are intended for the nonspecialist we shall not assume any 

knowledge of the theory of Markov operators  but will prove the necessary 

results. Thus only measure theory and elementary functional analysis are used. 

One exception though - -  we shall use a classical result on the existence of an 

invariant measure.  

Most of the work on these notes was done while the author was supported by a 

contract at the University of Maryland and also at the University of British 

Columbia. 

In the preparat ion of Section VII I  I was lucky to benefit from many 

conversations with Nassif Ghoussoub.  

The  notes are dedicated to the memory  of Shlomo Horowitz,  who was my 

student and my colleague and whose research added many original and elegant 

results to this theory. 

I. Definitions and notation 

Let (X, E, A) be a measure space and h ( X ) =  1. 

We shall study L~(X,E, A). Thus every relation will be in the "a .e . "  sense 

unless otherwise stated. Every function is assumed to be measurable,  every set is 
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assumed to be in X and every signed measure (or ~r finite measure) is assumed to 

be weaker than )t. 

DEFINITION 1.1. A Markov operator  is a linear operator  P, on L®(X,X,)t) 
such that 

(1) if f > 0 then Pf > O, 
(2) P1 -< 1, 

(3) if f ,  ~ 0 then Pfi ~ O. 

The operator  P acts on signed measures by 

tzP(A) = f PladA,  

where la  is the characteristic function of A. 

It is easy to see that /zP is again a signed measure weaker than ~c Use the 

Radon-Nikodym Theorem to define uP by: 

if dtz = udA then d(izP) = (uP)dA. 

This operator  on LI(X,X,A) satisfies: 

(i) If u ~ L, and f ~ L. then f (uP)fdA = f u (Pf)dA. 
(ii) If  u >= O then uP >= O. 

(iii) f[uP[dx <=flu lax. 
To see (iii) let u = u ÷ -  u- ;  then 

f lueldx~ f (u+P+u-P)dX = f u+(P1)da + f u-(P1)dX 

<= f (u + + u-)aA = f lulax. 

It is easy to see that (i), (ii) and (iii) imply (1), (2) and (3) of Definition 1.1 if P is 

defined as the adjoint operator.  

The operator  P may be extended uniquely to all nonnegative measurable 

functions by: 

if f, E L® and f,  "~ f put Pf = limP/.,  

i fu,  ~ L1 andu,  ~ uputuP = lim uP,. 

References. The study of Markov operators was initiated by E. Hopf  in [10]. 

A more detailed discussion of the above notions is given in chapter I of [5]. 
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II. The ltopf decomposition into conservative and dissipative parts 

Let P be a Markov operator .  

DEFINITION 2.1. 

12 = {[: 0_--<[ < 1 and P[<-[ and l i m P " [  = 0}, 

D = U {x: [(x) > 0} = sup{li>o: f ~ l)}, 

C = X - D .  
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THEOREM 2.1. D = U~=IDk where ET=oP"lok is bounded. 

I f 0 = < u ~ L l  then 

f = f u 
Hence E~=o uP" is finite on D~ for every k, thus: 

THEOREM 2.2. If U E L~ then X~=o uP" is finite on D. 

Let us consider the set C now. 

LEMMA 2.3. Let O <- f E L® be such that E ~ = o P " f < - K < ~  then X~=oP"f 

vanishes on C. 

PROOF. K - lE~=oP"f  ~ 1~ and, by definition, vanishes on C. 

LEMMA 2.4. Let 0 <= f E L® and Pf <- f, then Pf(x)  = f ( x )  if x E C. 

PROOF. The  function f - P [  satisfies the condition of the previous lemma, 

hence vanishes on C. 

Let us improve these two lemmas. 

The  sup here is in the L= (a.e.) sense: Every bounded collection has a least 

upper  bound and it is the supremum of a countable subcollection, see [16] 

proposition I1.4.1. 

Let [ ~  lq, then pkf  <=[, thus E,~=oP"(f - pk[)<= k and the same inequality 

holds for the infinite sum. Put A = { x : f ( x ) - P ~ f ( x ) > = E } ,  then la---  

e - ' ( f - P k f ) ,  hence E~=oP"la  =<cons t<~ .  As k---~oo and e---*0 the set A 

converges to {x : f (x )  > 0}. Since D is a countable union of such sets it follows 

that: 
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DEFINITION 2.2. 

THEOREM 2.7. 

P / = f .  

THEOREM 2.5. Let [ >- 0 then ~-7-o P"f assumes the values zero or infinity, 

only, on C. 

PROOF. Put h =min(1,~,7=oP"f) then 0 < h  _-<1, Ph < h  and P"h(x)--->O 

whenever ~ = 0  P"f(x)  < oo. But, by Lemma 2.4, h (x) = Ph (x) . . . . .  P"h (x) if 

x E C. Thus, if x E C then either Y~=oP"f(x) = oo or h(x)  = 0 in which case 

~,~=oP"f(x) = 0 too. 

THEOREM 2.6. Let 0 = < f < ~  and Pf  <_ f. Then Pf(x ) = f (x  ) if x E C. 

PROOF. ET=oP"(f-Pf)<=f<oo thus, by Theorem 2.5, the sum vanishes if 

x E C :  on C , f = P f .  

COROLLARY. I f  X E C then P l ( x ) =  1. 

The  opera tor  P is called conservative if X = C(D = 0) .  

P is conservative if and only if: 0 <= f <= 1 and Pf  <= f implies 

PROOF. If P is conservative use Theorem 2.6, if D ~ O  choose a nonzero 

function in fl. 

COROLLARY. I f  P is conservative then P1 = 1 and P~ is conservative too. 

PROOF. The  first part follows from Theorem 2.7. Now let 0_-< [ E  L® with 

0 - < ( I - P k ) )  ¢, then O < = ( I - P ) ( I + P + . . . + P k - 1 ) f  and equality holds by 

Theorem 2.7. 

THEOREM 2.8. Let P be a conservative operator and f >= 0 and P[ = f. Then 

Pl~.:f(~)>,,~ = l~x:.x)>.~. 

PROOF. 

f - a : ( f -  a)  + - ( f -  a ) -  = P [ ( f -  a )  ÷] - P [ ( f  - a)-] .  

Thus P [ ( f  - a) - ]  -> (f - a ) -  and ([ - a ) -  _-< a. Apply Theorem 2.7 to a - (f - a ) -  

to conclude that e [ ( f -  a) - ]  = ( f -  a ) - .  Therefore  e [ ( f -  a )  +] = ( f -  a)* too. 

Thus P[min(1,  n ( f -  a)+)] _-< rain(l ,  n ( f -  a)  +) and, again, equality holds. Let 

n---> ~ to obtain the result. 

DEFINITION 2.3. The  operator  P is called ergodic if P1A = 1A implies 

A ( A ) ( 1 -  A(A)) = 0. 

COROLLARY. Let P be ergodic and conservative. I f  f >>- 0 and Pf  <- f then 

f = const. 
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A n o t h e r  character izat ion of ergodic and conserva t ive  ope ra to r s  is given by: 

TrmOREM 2.9. Let P be ergodic and conservative and f >= O, but not identically 

zero, then E~=oP"f ~ oo. 

PROOF. It is enough  to p rove  the result  when f = 1A where  A ( A )  > 0. Put 

'} AN = X: P"IA(x)_ - ->~  , 
n = 0  

Then  AN ~' A~ and 

N 

1A,,<=N ~'~ P"IA. 
n = o  

Thus  P1A~(X) = 0 if X ff A= or P1A~ <= 1A®. Let  N - - - ~  to conclude P1A== 1A= 

thus, by the Corol la ry  to T h e o r e m  2.8, A = =  X. Finally X = C so if 

~ = o P " l a ( x ) > 0  then E~=oP"lA(X) = ~. 

References. T h e  results descr ibed in this section are all classical, most  p roved  

in [10], see also [16] and [5]. This presenta t ion  is different since the H o p f  

Maximal  Ergodic  L e m m a  was not used. 

III. The definition of a cycle 

T h r o u g h o u t  this section we shall use 

ASSUMPTION 3.1. P I =  1, and if f>=O and Pf =-O, then f =-O. 

Note  that  if P is conserva t ive  then Assumpt ion  3.1 holds. 

If Pf =- 0 then Y,~-oP"f = f < °0, so the sum is zero or f ~ 0. 

LEMMA 3.1. Let P1A, = 1B, and P1A~ = 1B~, then P l a , u &  = 1B,uB~. 

PROOF. 

1., + 1,,2 = P ( l a ,  + 1A2) --> P1A,u..2 = P ( m a x  (1a~, 1A2)) 

_-> max(P1A, ,  P1A2)= max (IB,, 1B2)= 1B,~B2- 

Thus  if x @ B~ U B2 then 1 = 1B,u82(x)= < P1A,uA2(X)<= 1. On the o the r  hand  if 

x ~ B, t0 B2 then 0_-< P1A,uA:(X)=< 1B,(X)+ 182(X) = 0. 

LEMMA 3.2. LetPsatisfy Assumption 3.1 and letP1A, = IB, andP1A2 = l~ 2. If 

B, CB2 then A , C A 2 .  
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PROOF. PI,%uA2 = 1BIUB2 = 1~ = PIA~. Thus  

0 = P1A,uA2-- P1A~ = PI.~,uAz-A ~. 

Hence ,  by Assumpt ion  3.1, A1 t2 A2 = A2. 

LEMMA 3.3. Let P satisfy Assumption 3.1. I f  O < f  <- _ 1 and PJ:= 1B then 

f = ltx:~(x)>0r. 

PROOF. Put A = {x: f(x)>= a} for some  a > 0 .  Then  f_-> a-11A and 1B = 

Pf>-a-~P1A or P 1 A ( x ) =  0 if x ~ B ' .  Thus  P1A--< lB. Let  a - - * 0  to conclude 

1B => Pl~x:r(x)>o~= > Pf  = Is. 

Let  P be  an ergodic and conserva t ive  opera to r .  The  ope ra to r  P~ is conserva-  

tive again but  may fail to be  ergodic.  Put 

0 = { A :  Pk lA = I A } .  

By L e m m a  3.1 0 is a o- subfield of ~. If A E 0 then 

0 = ( I -  P ) ( I +  P + . . .  + Pk- ' ) IA  

hence  ( I +  P + - - - +  Pk-~)IA = const  or  ( I  + P + . - .  + Pk-~)IA -->_ 1. This  implies 

that  0 is a tomic:  o therwise  we may  find a sequence  A ,  ~ 0 where  A .  $ and 

A (A,)---~ 0 thus par t  (3) of Defini t ion 1.1 is violated.  Let  Bo be an a tom of 0. By 

L e m m a  3.3, P ' IBo is again a character is t ic  function.  Put P ' IBo = 1B,, 0 =< r < k. By 

L e m m a  3.3, B, is again an a tom of 0. 

THEOREM 3.4. Let P be an ergodic and conservative operator. Given an integer 

• , L.J,=o B, X k there exist sets Bo, B~,. • Bd-~ where d I k, the sets are disjoint, ~-~ = 

and P l s ,  = ls,.~ where Bd = Bo. I f  Pk lA = 1A then A is the union of some of the 

sets B~. 

PROOF. Define  B, as above  and let d be  the smallest  integer  for  which 

PdlBo = lno. If 0 = i < j  < d and B, = Bj then 1Bo = Pd-JlB, = P ~ - ° - ° l ~  o, a con- 

t radict ion.  Now d 1 k and d-~ ~,=0 1B, is invariant ,  hence  it is identicaly one. Note  

that  B, f3 Bj = ~ since they are a toms.  Now if A ~ 0 then A fq B~ is e i ther  B~ or 

e m p t y  since B~ is an a tom.  

Let  P be  an ergodic and conserva t ive  ope ra to r  and put  

DEFINITION 3.1. ~ .  = { A : P " I A  is a characteris t ic  function}. 

Then  

(a) E .  is a o- subfield of E: L e m m a  3.1. 

(b) E .  D ~.÷~: L e m m a  3.3. 
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DEFINITION 3.2. E(,)= f " I ~ , E . .  

Again E ~) is a o- subfield of Y. Let A E E ~1) and 1B = P1A. Then P~IB = 

Pk+llA is a characteristic function, hence B E Y(~) too. By an obvious abuse of 

language we shall write PA = 13. Now we saw 

E (') D PE (" D P2E(~ D " " .  

DEFINITION 3.3. L (2)= ( " I ~ o P ~ L  (~). 

By Lemma  3.1 P ~ E ~  is a field, hence so is ~2). Now if B,  ~ PkE(') and B,  1' B 

then lB, = P~ 1A~ and, by Lemma 3.2, A,  1' A thus PkE(1) is a o" field and so is 
~.(2). 

Let us see how P acts on E(2>: If A E E ~2> and B = PA then A ~ PkE(~), hence 

B C P~*'E ~ for all k, thus B E E ~2). 

Again let A E E ~2~, then A E Pk*'E(~) or 1A = P(P~ le~) where Ek E E ~. By 

Lemma 3.3 PklE~ is a characteristic function. By Lemma 3.2 Pkle~ = 1E is 

independent of k. Thus E E E ~2~ and IA = P i e  or PE  ~2) = E ~. Let us summarize.  

THEOREM 3.5. Let P be an ergodic and conservative operator, then "2,( ~ is a ~r 

subfield of E which is mapped by P onto itself. 

Later we shall prove that if P is a Harris operator  then E ~1~, and thus E ~ too, is 

atomic (Lemma 5.3). This motivates the next result. 

THEOREM 3.6. Let P be ergodic and conservative. I f  "2, ~ is atomic then 

• . - ,  L-J~=o A~ = X and P1A, = 1A,., E~2)={Ao, A,,  A~_~} where A, are disjoint, d-~ 

where Au = Ao. 

PROOF. Let Ao be an atom of E ~2~ and put A , = P ' A o .  Since P is an 

automorphism of Y(2) onto itself the sets A, are atoms too. We cannot have them 

all disjoint since this would imply ET=,, P '  lno =< 1 contradicting conservativeness. 

If P~Ao = P'÷~A0 then, by Lemma 3.2, P~Ao = Ao. Let d be the smallest integer 

for which PdAo Ao. Then ~-~ = E~:o 1A, is invariant hence identically one. Finally, if 

A E E ~) then A ¢3 A, is either empty or A~. 

COROLLARY. Let P be conservative and E (2) be atomic. E (2) is trivial if and only 

if P~ is ergodic for every k. 

PROOF. If Pd is ergodic then Ao = X. If P~ is not ergodic, for some k, then, 

by Theorem 3.4, Y (2) is not trivial. 

The decomposit ions described in Theorem 3.5 and Theorem 3.6 are called 

cycles. 
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If ~t2~ is atomic then the restriction of pd to A~ has ergodic powers and the 

Corollary applies. 

References. Similar notions are discussed in [13], [15] and [18]. 

IV. Convergence o| the iterates 

The  collection of Markov operators is ordered: 

P, <= P2 if P , f  <= P2f for all 0 <= f E L=. 

Let us use 

DEFINITION 4.1. For every 0 < f E L~ 

(P, A P2)(f) = inf{P,g + P2(f - g): 0 =< g =<f}. 

It is clear that P1 A P2=< P, and P~ A P2=< P2: choose g = f or g = 0. 

If O is a Markov operator  and O = PI, O =< P2 then, for each 0=< g =<f, 

Of = Og + O f f -  g)<= Pig + P2(f - g). Thus O =< el  A P2. Let us establish that 

P1 ^ P2 is additive for nonnegative functions. This will show that it can be 

extended to a linear operator  on L®. Let 0 < f~, f2 E L® and 0 < g < f~ + f2. Put 

gl = min(g, fl) and gz = g - g , ,  then O<=g~<-_fl and 0=<g2=<f2: if g~(x)= g(x)  

then gz(x) = 0-< f2(x). If gl(x) = f , (x)  then 0 -  < g ( x ) - f ~ ( x )  = g2(x)<=fz(x). 

Additivity is now immediate. 

Later we shall study 

DEFINITION 4.2. For  every 0 --< f E L®, (P1 v P 2 ) ( f )  = sup{Pig + P z ( f  - g): 0 _--< 
g --<f}. 

This is the smallest linear operator  which is greater than both P1 and P2. It may 

fail to be a Markov operator  since (P1 v P2)1 may be greater than 1 at some 

points. 

ASSUMPTION 4.1. Let P, Q1 and Q2 be commuting Markov operators such that 

(a) P I =  01 1=  O21 = 1. 

(b) There exist integers ri and Markov operators R~ such that 

P" >= RiQ1 and P" >- RiQ2. 

(c) RI" " R , ~  O for all n. 

From (b) follows 

P', = R,Q, + S',= R,Q2 + S'; = R, ½( Q, + Q2)+ $, 
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where  S ' .  S'[ and ,.~ are all nonnegat ive .  

Le t  us prove,  by induct ion,  that  

(i) P rl . . . . . .  "= R ,  " . " R,,-~. (QI + Q2)'* + S,,; S,, > O 

If n = 1 t ake  St = $1. Now,  induct 

P ' ,  . . . . . .  °+'--, = R , - - .  R .  1 (Q1 + Q2)"P "÷' + S.P ' . . ,  

= R l ' ' "  R . P  "+' 1 (Q1 + Q2)" + S .P  "+' 

= R , - - . R . R . ÷ ,  ~ (Q,  + Q2)+ S.÷, (Q,  + Q2)" 

= R , . . .  R .R .+ ,  ~ (Ol + O2)"+' + Sn+l 

where  

(ii) 

Equa t ion  (i) may  be improved  to 

1 Sj" (iii) P(" . . . . . .  ")' = ~ ~ (Or + O2)" + . ,  

If j = 1 take T~ = R 1 - - .  R,, and use (i). Induct  

& . ,  = R , - . .  R.g .+ ,  1 (O,  + O~) ° + S .P  "-÷, => 0. 

%>-_0. 

p% .. . . . .  ~)~÷i) = Tj I (O,  + O2)"P" . . . . . .  "+ S~p'~ . . . . . .  . 

where  

(iv) 

THEOREM 4.1. 
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+ S,P '+,  

r l+ ' "+r  = TiP " (Q,  + O2)" 

[ , ] +SJ. R I ' " R , ~ - ~ ( O t + O 2 ) " + S ,  

= Tj+I 1 (Q1 + Q2)" + S~ +~ 

= S . R I " "  R . .  Z+, TIP" . . . . .  "~+ J 

Let  Assumpt ion  4.1 hold. I f  P is a conservative operator such 
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that pk is ergodic for all k then 
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s u p { P " ( O 2 -  Q1)f: - 1 <= f <= 1} , 0 .  

PROOF. No te  first that  if - 1 -< h --- 1 then 

P " + I ( Q 2 -  Q~)h = P " ( Q 2 -  Q~)Ph <-sup{P"(O2-  O~)f: - 1 <-f <-_ 1}. 

Thus  the sequence  of sup rema  is m o n o t o n e  and it is enough  to establish 

convergence  of some subsequence .  App ly  now (i) to the funct ion 1 : S , 1  = 

1 - R~- .  • R . 1 ,  or  S ,1  =< 1 but  we do not have  equal i ty by par t  (c) of Assumpt ion  

4.1. Fix n, to be  chosen later,  and put  g = l i m s ~  SJ,1. Then  0 _-< g =< 1 and, by (i), 

P ' ,  . . . . .  '-g _-> S,g = g. 

Since pk  is ergodic and conserva t ive  for  all k, we must  have  g = const and 

R , . . .  R ,g  = 0 thus g = 0. Le t  us apply (iii) to the funct ion 1 : 1  = Tj l  + SJ.1 or  

T j l -<  1 thus ]1Tj [[ _-< 1. Use  (iii) again for  - 1  _-<f _-< 1: 

rn)J(Q2 -- Q l ) f  = T] I (Q1 "~ Q2) n (Q2 -- Q l ) f  + Sin(Q2 -- Q1)f" p¢,, 

Now,  

IS',(Q2 - Q~)fl--< 2SJ-1 ~ 0 

by the above  remarks .  On the o ther  hand  

by the b inomial  formula .  The  sequence  (~) increases for  0<-: k <-n/2 and 

decreases  for  n/2 <-_ k <= n. Thus  the sum is b o u n d e d  by 2-"(.72) which is, by the 

Stifling Formula ,  O ( l / X / n )  f rom which the t h e o r e m  follows. 

COROLLAaV. Let ps be ergodic and conservative for all]. For a fixed k either 

sup{(P "÷k - P")f:  - l<-_f<- 1} = 2 

for all n and almost all x (equivalently P" ^ p,+k = O) or 

PROOF. Pu t  

lim sup{(P "÷k - P")f:  - 1 <-f<- 1} = 0. 

h, = sup{(P "*k - P " ) f :  - 1 =<f=< l} 
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and no te  that :  

(1) 0 =< h.  _-< 2: obvious .  

(2) h . + l = < h , : i f  - l _ - < f _ - < l  then  

(p.+,+k _ p.+,) f  = (p.+k _ p . ) p f  < h.. 

(3) h.+l_-<Ph.:  if - l _ < - f _ < - l t h e n  

( p , , + l + k  _ p.+a)f = p ( p . + k  _ p . ) f  <_ Ph.. 

(4) (P"  ^ P " + k ) l = l  ' • 

(p~ ^ p . + k ) l  = i n f (P"g  + P " + k ( 1 -  g):  O ~  g ~ 1} 

-- 1 -  sup{(P  ~÷~ - P " ) g :  O ~  g ~ 1} 

= 1 -  ½sup((P "+k - P " ) f :  - 1 <-f <= 1} 

s ince g = ½Cf+ 1) whe re  - l_-<f_--- 1. N o t e  h , - = 2  if and  only if P "  ^ p .+k  = 0. 

Let  h = lira h ,  (by (2)), then Ph = h (by (3)) hence  h = const  = ~. If a = 2 we are  

done ;  let a < 2: 

1 Ot 
(P"  ^ P~+k)l  = 1 - ~  h.  ~' 1 - ~ > 0 .  

A p p l y  A s s u m p t i o n  4.1 where  Q l  = I and  Q2 = pk  and R~ = P", ^ p.,+k (the 

choice  of n, will be  exp la ined  later) .  N o w  p.,+k _> Ri and  p.,+k __> Ripk so we t ake  

r, = n, + k and  it r ema ins  to verify (c) of A s s u m p t i o n  4.1. 

If R1 • • • R,,  1 ~ 0 for  an a p p r o p r i a t e  choice  of nl, • • •, n,, then 

R t . - .  R = ( P "  ^ P"*k)l-+ 1 1 - 2 )  R I " "  Rml  / 0  

and n = nm+1 may  be  chosen  so that  the  l e f t -hand  side does  not  vanish.  

Fo l lowing  D.  Revuz  put  

( / 
G = { k : l i m s u p { ( P " + k  p , ) f :  _ l _ _ < f _ _ < l ) = 0 ~ .  

t r t ~  } 

If  i, j E G  then  i + j E G .  If i + j E G  and  i E G  then j E G :  

p.+s _ p -  = (p-+,+s _ p - ) _  (p-+,+s _ p -+ , ) .  

Thus  the re  exists  an in teger  d such that  G = mul t ip les  of d. 

If d ~  0 cons ide r  the  subspace  of  L1 
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K = {u: II uP" II ,0}. 

If u = v(P ~ -  I) then 

II v(s"+~ - s") l l  =< f I v I sup{(P-+~ - P' ) f .  - 1 <- f <= 1}d~ . _ g  II u P "  If O. 

Hence L ~ ( I - P d ) C  K and by the Hahn Banach Theorem and since pd is 

ergodic and conservative we have 

f udA = 0 then I[uP"ll . ~  o. if 

Let us assume a stronger version of Assumption 4.1 by taking r, = r, R, = R 
(independent of i) and R 1 _-> const > 0. 

AssOMVrlO~ 4.2. Let P, O~ and Q2 be commuting Markov operators such that 
(a) P1 = Q,1 = Qzl = 1. 

(b) There exists an integer r and a Markov operator R such that 

P" >= RQ~ and P" >= RQz. 

(c) R l _ - > c o n s t = 6 > 0 .  

Since Assumption 4.2 implies Assumption 4.1 we immediately get: 

(i*) P" = R " I  (Q,+Q~)"+S. ;  S.>-O. 

(ii*) S.+1 = R "S 1 (Q, + Q:). + S.P'. 

1 
(iii*) P"J = Tj ~-  (Q1 + Q2)" + SJ.; Tj _-> 0. 

(iv*) Tj+, = TIP" + SJ.R" 

As before [! T~ [I--< 1, from (i*) when applied to 1, follows 

S. 1 = 1 - R " 1 < _ 1 - 6 " < 1 .  

Thus 

"P"J(Q2- Q,)"<= II l (o ,  + 02)"(Q2- O,)[I + 2"S. I' j 

term is O(1/V'n) while the second term is bounded by and  the  first 

(1 - 8 " )  j --'  O. 
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THEOREM 4.2. Let Assumption 4.2 hold. Then 

IIPn(O~-O,)ll ,0. 

PROOF. I I P ' ( Q 2  - O1)11 is monotone and the theorem follows from the above 

remarks. 

COROLLARY. Let P be a Markov operator with P1 = 1. Let k be a fixed integer, 

then either II P'+k _ p .  II = 2 for every n or lim,_® II p,+k _ p~ II = o. 

PROOF. Let II P "  +~ - p m  11 < 2 for some m. Put R = P "  ,. +k ^ P  , Q I = L  Q2 = 
lSU- rtp,,,+k pk and r = m + k .  Note that R I = I - ~  P/( - P " ) f :  - 1 = / = < 1 } -  -> 

1-½lip "+k - p "  l[ > 0. 
Thus Assumption 4.2 holds and Theorem 4.2 applies. 

As before, if G ={k :  liP °+k -Phil L0} then G consists of multiples of a 

fixed integer. 

Let us conclude this section with some results that will be useful for the study 

of Harris operators. 

ASSUMPTION 4.3. Let P, QI and Q2 be commuting Markov operators such that 

(a) P1 = Q l 1 =  Q21 = 1. 

(b) There exist an integer r and a Markov operator R such that 

P'>-_QIR and P'>=Q2R. 

(c) R l = c o n s t = ~ > 0 .  

Note that (c) is much stronger than (c) of Assumption 4.2. 

The same argument as before will show 

(i**) 

(ii**) 

(iii**) 

(iv**) 

p,.,, = 1 (Ol "1- Q2)"R ~ + S. ; S. _~ O. 

S.+~ = -~. (O, + Qz)"SR ~ + P'S..  

1 = ~- nT. P ' ~ J  (Q~+Q2) j + S . ,  i. 

Tj+z = P'~Tj + R "S~. 

Apply (i**) to the function 1: 

~_->o. 

l = S n + S , 1  
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(note we used equali ty:  R 1  = 3). Now T l l = R " I  = 3" = const =/3, .  Let  us 

prove,  by induction, that Tjl  = const =/3j :  by (iv**) applied to 1 

Tj+ll = flj + 3"(1 - 3n) i = const =/3j+1. 

App ly  now (iii**) to the function 1: 

l = f l j + S ,  1 or /3j_---1 

hence  IJ Tj I[ -< 1. Hence  we may use (iii**) to conclude 

I 1  
o,) , - ' ,  o,)<o, 

and as before 

THEOREM 4.3. 

+ 02)- t + 2tl s. II' 

Let  Assumpt ion  4.3. hold. Then 

l im tl ( O 2 -  o , ) e  ° II : 0. 

COROLLARY. Let  P be a Markov  operator with P1 = 1. Let  tz be an invariant 

measure for P namely:  

<- tx, tz ( X )  = 1 and f (Pf)dt~ = f fdl~. 0 

Put V f  = f fdtz, V is a Markov  operator. Let  there exist a measure z satisfying 

0 <= r, 0 < ~'(X) <= 1 and if R f  = f f d r  then P" >= R for some integer r. Then 

lira liP" - V4J = O. 

PROOF. N o t e  first that  P V  = VP  = V 2= V. Also P1 = V1 = 1. Now R 1 = 

r ( X )  = const. Also P '  _-> R = PR = V R  and Assumpt ion  4.3 holds for QI  = P 

and Q2 = V. Hence  J I (V-P)P"I I - ->O by Theo rem 4.3, but  ( V - P ) P " =  

V P"+ '  

References. T he  Corol lary  of T he o re m  4.1 is the " ze ro - two"  law of Ornste in  

and Sucheston [20]. We fol lowed here [6]. 

V. H a r r i s  C o n d i t i o n  

Let us in t roduce some terminology.  

A "dens i ty"  is a function k on X x X such that 0_-< k(x ,  y)  and it is jointly 

measurable and f k (x, y ) A ( d y )  is a bounded function of  x. 
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The "integral kernel" of a density is given by 

Kf(x)  = f k(x, y)f(y)A(dy),  f E L~. 

If K1 _-< 1 then K is a Markov operator. Now 

L K1BdX=fL  k ( x , y ) A ( d y ) A ( d x ) = I ( ( A × B )  

where /(" is a measure on (X x X, E x E) given by d/(  = kdh ~. 
Let P be any Markov operator and define /5 on rectangles of X × X by 

P(A × B)= fA P1BdX. 

In order to extend this set function, linearly, to the field of all finite unions of 

disjoint rectangles (see 1.6 and III.1 of [16]) we have to show: 

If A × B = U 7z~ A~ x Bi where Ai x B~ are disjoint then 

/5(A × B)  = ~ /5(A, × B,). 
i = l  

NOW A = 1"~7~1 [A, U (A - A,)] = U E j  where the sets Ej are disjoint and for 

every i and j either E i CA,  or E i AA~ = 0 .  We may assume that A(Ej)>0 
(discard the others). Now 

1A(x) l~ (y )=  ~ 1A,(x)l~,(y), 
i = l  

multiply by l~,(x) and evaluate at x E Ej to obtain 

1B = ~ 1~,; P l y =  ~ Pie, .  
i: E j C A  i i :  E I C A  i 

Thus 

Sum over j :  

L P 1 B d A = ' ~  L ,  Plo,dA. 

We shall use /5 to denote the extension of P too. 

LEMMA 5.1. 'Let P be a Markov operator and K, K~ and K2 be integral kernels 

of the densities k, k, and k2. 
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(1) If P <= K then P is an integral kernel too. 
(2) K~<-_K2 if and only if k~<=k2 a.e. A s. 
(3) PK and KP are integral kernels. 
(4) K~ v K2 (K1 ^ K2) is an integral kernel 

(min (k 1, k2)). 

whose density is max(kl,  k2) 

PROOF. (1) If P -< K then /5 =</~. N o w / (  is continuous at O (if E,  E E x 

and En $ O t h e n / ( ( E n ) ~ 0 ) .  Thus P is continuous at O too and has a unique 

extension to all of 5: x E. The extension will be denoted again by /5. By the 

uniqueness of the extension o f / (  - 15 we must have 15 __</~ on all of E x ~. Thus 
t5 is a measure (countably additive) and 15 .~ A2. If d P =  rdA 2 then r - 0 is jointly 

measurable and 

fA PlsdA = r(x,y)A(dy)A(dx) 

hence P l s  = f~r(x,y)A(dy) and P is an integral kernel. 
(2) Let kl =< k2 a.e. A 2, then for almost all x, A{y: kl(x, y)=< k2(x, y)} = 1. Thus 

a.e. KdA(X) <- K21A(x). 
Conversely, let K~ _-< K2 then/(~ -</(2 on rectangles and, by unique extension, 

on ~× :~  thus k~<=k2 a.e. A s. 
(3) Let ko ~ 1 and K0 be its integral kernel. 

If k < const then K =< const Ko but (PKo)f = (ffdA)PI: The integral kernel of 

the density q(x, y) = P l (x ) .  

(KoP)f = f (Pf)(y)A (dy) = f (1P)(y) f (y)A (dy ): 

The integral kernel of the density q(x, y ) =  (1P)(y).  
By part (1) we have, if k is bounded, that PK and KP are integral kernels. If k 

is not bounded put k, = min(k, n) and let K, be its integral kernel. Let q, be the 

density of K,P (PK,). The sequence q, increases by part (2). Let q~= limq.. If 

0 = < f E  L~ then 

f q(x ,y) f (y)A(dy)=!!m f qn(x,y)f(y)A(dy) 

= l i m  (K.P)f(x)= l i m  Kn (Pf)(x)= K(Pf)(x)= (KP)f(x). 

(4) Note that K~ v K2 -< K~ + K2 thus, by part (1), it is an integral kernel. Let 

/¢3 be the density of K~ v K2. By part (2), k3 -> max(k1, k2)_- > ki, i = 1,2; again by 
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part (2) the integral kernel of max(k~, k2) dominates both K1 and K2 and thus 

K, v K2. Use (2) again to conclude max(kt,  k2)->-k3. 

Let P be a Markov operator and put 

4, = {k : k is the density of K where K <-<_ P}. 

By part (4) of the previous lemma ifk~, k2E 4, then max (k~, k2)E 4' too. Thus if 

a=sup{ f f kdA2:  k E 4 ' }  then a = l i m f f k , d A  2 where k. E 4 '  and k . l ' .  Put 

q = lira k. and let Q be its integral kernel. By Fatou's Lemma Q _-< P or q E 4'. 

Now f f q d A  2= ~, thus if k E 4' then max(k,q)  E 4' and f fmax(k,q)dA2<= a = 

f f  qdA 2, thus q is the maximal element of 4'. 

THEOREM 5.2. Every Markov operator P can be decomposed to P = Q + R 

where Q is an integral kernel and R is a Markov operator that does not dominate 

any integral kernel. 

DEFINITION 5.1. The above decomposition will be called the Harris Decom- 

position. We shall denote the Harris Decomposition of P" by P" = Q, + R.. 

DEFINITION 5.2. The Markov operator P is called a Harris operator if 

(1) P is conservative. 

(2) If A ( A ) > 0  then X~=l Q, IA is not identically zero. 

Note (2) is equivalent to 

(2') If 0_-<f E L= and E~_~ Q.f  =-0 then f ~-0. 
Recall Definitions 3.1, 3.2 and 3.3. 

LEMMA 5.3. If P is a Harris operator then "Z ('~ is atomic. 

PROOF. Assume to the contrary, A E ~  °> and A = U~"~At,. where 

A,.. E E (~1, A(A,,o)= 2-"A(A) and Aj...~ are obtained by splitting each set At,. 

into two sets, in E "~, of equal measure. The sets At,., 1 =< i _-< 2" are disjoint, thus 

2 n 

PklA,,,(x)= P~IA(x)<=I, 
i=i 

and each term in the sum is either zero or one by the definition of Eo) Thus for 

all i, with at most one exception, pk 1A,,(X)= O. The same holds for Qk: For a 

fixed k and x 

) = Qk 1Ai, n(X ) = JA qk (X, y)h (dy) O~ 1A (x 
L n  

where j = j(x, n) and the sets Aj,, decrease as n increases. Thus Qk 1A(x)= 0 

and, by Definition 5.2, ,~ ( A ) =  0. 
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REMARK. The invariant sets are in E °), hence if P is a Harris operator its 

collection of invariant sets is atomic and we may assume with no loss of 

generality that P is ergodic too. 

Note that E (2) is atomic too thus, by Theorem 3.6, the restriction of pd to one 

of the atoms of Y ~2~ has ergodic powers. 

LEMMA 5.4. Q.+m >= P"Qm > Q.Q,. ; Q.+m >= Q.P" and R.+., <= R.R,.. 

PROOF. P"÷" = (Q, + R,)(Q,,  + Rm) = P"Q,, + Q.Rm + R.R,.. The first two 

terms are integral kernels by part (3) of Lemma 5.1. 

If one chooses a particular version of qk (x, y) then Qkf(x) is defined at every 

point x, by fq~ (x, y)f(y)X (dy), even i f / i s  defined a.e. only. Thus Qk (Pmf)(x) is 

everywhere defined: 

Ok (P"f ) (x  ) = f qk (x, y ) (P" f ) ( y  )X (d r ) = f [qk (x,.)pro ](y )f(y ) ,  (dr ). 

Let us prove that [qk (x , . )P"  ] (y) is the density of the integral kernel QkP m. By 

the above remark it suffices to show that it is jointly measurable. 

Consider the collection of densities r (x ,y)  such that [r(x, . )P ] (y )  is jointly 

measurable. 
It is clear that this collection is linear and monotone, thus to show that every 

measurable function satisfies this condition it is enough to show that the 

characteristic function of every set in E x ~ does. 

Let us study the collection of sets, E, in E × E such that [1E(x, . )P] (y)  is 

jointly measurable. 

Every rectangle has this property. It is a monotone collection. 

By theorem 1.4.2 of [16] every set in E × E has the desired property. Let us 

choose a version of q. such that O.÷lf(x)_- > O.(Pf ) (x )  at every point x if 
0_-<fE L®. Suppose we chose ql""qk ,  then pk÷l= QkP+ RkP. Choose the 

density of Q~P at every point as above and add to it the greatest integral kernel 

dominated by RkP. 

Therefore 

LEMMA 5.5. 

O <- f ~ L®, then 

We may choose versions of the densities q, in such a way that, if 

O.+.4(x) >= 0.. (ProD(x) 

at every point x. 
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PROOF. We proved the lemma for m = 1. With this choice we have 

O . . . .  ~f(x) >- Q,+,, (Pf)(x)  >= Q. (P"Pf) (x)  

by an induction argument on m. 

Throughout the rest of the paper we shall assume that q, satisfy Lemma 5.5. 

THEOREM 5.6. Let P be an ergodic and conservative Markov operator. P is a 

Harris operator if and only if Q~ ~z 0 for some k. 

If  P is a Harris operator then 

(a) Q, 1 1' 1 a.e. 
(b) If  A(A) > 0 then ET=~ Q.1A(x) = oo at every point x for which (a) holds. 

PROOV. Let Q~ ~ 0 and A ( A ) >  0. By Lemma 5.4 

~ O k + , l a > = O ~ P " l a > = O ~ l / O .  
n = l  n = l  

Thus P is a Harris operator. 

(a) R~I =< 1 and, by Lemma 5.4, 

R,,+ll <= RmRll <= R,, 1. 

Put g = lim,,~®R,,1, then 0 < g < l  and 

pkg = Qkg + Rkg >--_ lira RkRm 1 -> lim R~+m 1 = g. 
m ~  m ~  ~ 

Thus, since pk is conservative, pkg = g and Okg = 0, by Harris Condition g = 0. 

(b) Let Q , , l ( x ) > 0  (by (a)), then 

~ O,,+,la(x)>- - O,, ( ~  P " l a ) ( x ) .  

Now, E~=1P"la _->N1 for every constant N thus 

O. lA(x)>=NO,,l(x) 
n = l  

and the left-hand side must be infinite. 

References. The idea of the decomposition goes back to W. Doeblin [3]. A 

similar idea may be found in [21]. Our description is closer to Harris's [9]. 

Lemma 5.3 is due to J. Feldman [4]. 

In our study we do not assume that P is given by a transition probability and 

that E is separable, which complicates the arguments considerably. 

See also [17] and [18]. 
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VI. Harris Lemma 

Let P be an ergodic Harris operator and let Qk ~ 0. Choose e > 0 so that 

0 < ;t z({(x, y): qk (x, y) > e}). 

Thus 0 < f ;t ({y : qk (x, y) > e }fit (dx) and the integrand is greater than ,5 > 0 on 

a set E with A ( E ) > 0 .  Let A ( A ) >  1- `5 /2  and x E E then 

o r  

Thus 

A ( A ' O ( y : q k ( x , y ) - - - e } ) _  -< +I-`5=I-~ 

`5 
A(A f'l{y: q k ( x , y ) >  e})=>~. 

fA 1 P k l A ( x ) =  qk(x ,y )A(dy)  >- eA(A f3{y: qk (x, y) > e})->~ e& 

Let B be any set with A ( B ) > 0 .  Choose N so large that if 

E.~IPnlB(x)_-- > 1} then A ( A ) >  1-`5/2.  Now 1A < E . ~ I P " l s  hence 

N > 1  
Pk+"IB -->PklA = ~ e`51u. 

n = l  

Let us summarize. 

A = 

LEMMA 6.1. Let P be an ergodic Harris operator. There exists an integer k, two 

positive constants e and 8, and a set E with A ( E ) > 0  such that: 

(a) I f  x E E then ,~ ({y : q~ (x, y) > e }) > `5. 

(b) I f  A ( A ) >  I - ` 5 / 2  then P~IA >=½e`51~. 

(C) If  A ( B ) >  0 then there exists an integer N = N ( B )  such that E~=o P" 1~ >= 

½e`51~. 

DEFINITION 6.1. A set E is called "reserve" if h ( E ) >  0 and for every set A 

with A (A) > 0 there exists an e = e (A) > 0 and an integer N = N ( A )  such that 
N n E.=oP 1A --> e l~ .  

Lemma 6.1 shows that an ergodic Harris operator has reserve sets. Let E be 

reserve and put 

Then 
K 

1~ K ~ ~ pk lB. 
k = 0  
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If A ( A ) > 0  find e > 0  and an integer N such that E~_oP'IA => elB, hence 

K K N N + K  

el~,,_--< e ~ Pkl~_--< ~ ~'~ Pk+"IA _-<(K + 1) ~ P ' IA 
k= O k = 0  . - 0  i - - 0  

since each power k + n repeats itself at most K + 1 times. Thus Ek is reserve 

again and Er ~ X. 

THEOREM 6.2. Let P be an ergodic Harris operator, then there exist reserve sets 
EK with Ex "~ X. 

In the rest of this section we shall use the "zero- two" law for Harris operators. 

LEMMA 6.3. Let P be a Harris operator such that P~ is ergodic for every n. For 
every fixed integer k, I,.J~=l{(x, y): q ~ ( x , y )  >0} = X x X a.e. A 2. 

PROOF. If Q j#  0 then Qj+, >= QiP" hence Qj÷,# 0 too. Thus pk is again a 

Harris operator  with ergodic iterates. Let us then prove the lemma for k = 1. By 

Theorem 5.6 there exists a set Y with it (Y) = 0 such that if it (A)  > 0 and xo ~ Y 

then X7=1QnlA(xo) = oo. Note we assumed, as in Lemma 5.5, that Q~f(x) is 

everywhere defined. Let us study the following situation: 

(*) Xo~ Y and q,(xo, y)=O for alln. 

By Lemma 5.4 (*) implies 

0 = f q~(xo, z)qm(z,y)it(dz)= fA q,(xo, z)q=(z,y)A(dz) 
m 

where A,~={z :q , ( z , y )>O} .  Thus q,(xo, z )=O for almost all z E A m  or 

Q~lA~(Xo) = 0. Since xo ~ Y we must have i t ( A , )  = 0. Thus (*) implies 

(**) q~(z, y) = 0 for almost all z. 

Given any set A we have 

o r  

and if (**) holds then 

d(AO.) (y) = f,, q (z, 

(y)= O. 
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Let 

E = {(x,y): q . ( x , y )  = 0 f o r a l l  n a n d x ~  Y} .  

For a fixed x0 ~ Y, E~o = {y: q.(xo, y) = 0 for all n}, then 

dOo.)  
(AO,)(E~o) = ~o dA ( y ) A ( d y ) =  0 

or, by Theorem 5.6, A (E~o) = 0 and AZ(E) = fa(Ex)X(dx)= O. 

THEOREM 6.4. Let  P be a Harris operator such that P"  is ergodic for all n. Then 

lim sup{(P " + ' -  P " ) f :  - 1 <= f <= 1} = O. 

PROOF. Let  q ~  0 and choose k > r. By the previous lemma 

A2({(x, y): q,(x, 0 

for some n, thus O.k ^ O , S  0 hence p.k A P ' #  0 too and, by the Corollary to 

Theorem 4.1, we have 

lim sup{(P " + j -  P ' ) f :  - l_-<f=< 1} = 0 
r n ~  

for some integer j. Let d be the smallest such integer; if d g  i then p,,~+l ^ p.n = 

0 for every n and m. Thus O,,d+l ^ O,n = 0 too. 

Fix m so that O,,n+, ~ 0. By (4) of Lemma  5.1 we have min(qmn+,, q,~) = 0 for 

all n which contradicts Lemma  6.3. 

References. Lemma 6.1 was proved by Harris  in [9]. 

The notion of reserve sets was defined in [1]. 

Theorem 6.4 was proved by very different methods in [13]. 

VII. The induced operator 

Let P be a Markov operator  and E a fixed set with A (E)  > 0. For every set A 

with A ( A ) > 0  put T A f =  1Af; then TA is a Markov operator .  

DEFINITION 7.1. Pz = E~=o(PT~,)"PTz. 

Note that 
N N 

(PT~,)"PTel  = ~'~ ( P T e , ) " ( P -  PTE,)I 
n = O  n = O  

N N + I  

<- ~ (PTe,) ~ 1 - ~ (PTe,)" 1 = 1 - (PTe,) ~'÷~ <- 1. 
n = o  r i l l  
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Thus Ps1-< 1 and P~ is a nonnegative linear contraction on L~. Now P8 is a 

Markov operator  since if 0 < f < M then 

Psf <= ~ (PTs,)"PTJ + M ~, (PTE,)'PT81, 
n ~ O  n = N + l  

hence part  (3) of Definition 1.1 holds too. The opera tor  Pc is a Markov operator  

on L®(X,X,A), but we shall use the opera tor  TsP8 on L®(E,E~,A~) where E1 

contains all measurable  subsets of E and for A C E, A~(A)= A(A)/A(E).  

LEMMA 7.1. 

and 

Let 0 <= f E L= and f = T j ,  then 

N N 

n ~ O  n ~ O  

N N 

T~PT<-_ ~ (T~P,~)"[. 
n = 0  n = 0  

PROOF. The  second inequality follows from the first, since Pe = PsTe thus 

(TsPE) n = TnP~. Now P8 = PT8 + (PTw)Ps, hence P = PTE + PTw = 

Pe + (PTs,)(I - Ps). Let us prove the inequality by induction: 

N + !  N 

E P ~ f = f + P E  P"f 
n ~ 0  n = 0  

N 

<=f+P ~ P~f  
n = o  

N 

= f + (P8 + PTs,(I - Ps)) ~ P~f  
n = O  

N + I  

= ~'~ P~f  + PTe,(,f- P~+'f). 
n = O  

Now Ts,f = 0 and the lemma follows. 

COROLLARY. If P is ergodic and conservative then so is T~Pm hence 

T~P818 = 18. 

DEFINITION 7.2. A set E is called "special"  if h (E)  > 0 and for every A C E 

with h (A)  > 0 there exists an integer N = N ( A  ) and a constant e = e (A)  where 

e > 0 and 
N 

P~IA ----> e lE.  
n ~ 0  

By L e m m a  7.1 and Theorem 6.2: 
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THEOREM 7.2. Let P be an ergodic Harris operator, then there exist special sets 

EK with EK ~ X. 

THEOREM 7.3. Assume A ( E ) > 0 and E~-o P k l e (x) > 0 at every point. I f  ~l is 

a finite measure such that 71 = 71T~ and 77 = 71TEP~ then Ix = E~=orl(PT~,)" is or 
finite and satisfies IxP = Ix. 

REMARK. The  assumption holds if P is ergodic and conservative. 

PROOF. 

IXP = IXPTB + IxPT~, = ~_, ~7 (PTE,)"PT~ + ~ ~7 (PTB.)" = ~TPE + Ix - T1 = 
n = O  nf f i l  

since r/Pa = r l T ~ P z  = ~1. 

Now f pk 1Edix = f 1Edix = *7 (E)  = 1, hence 

Ix ({x:  Pk l z (x )>=¼})  < ~  

and IX is or finite since E~_o P~ 1~ > 0 implies 

I,.J {x: P k l ~ ( x ) > = l } = x .  
k, n 

Note that IXTE = r/. 

The  next result will be very useful in Section VIII .  

THEOREM 7.4. 

and 

rE - T, P. = ( i -  P)  
n = O  

~_~ (Ta,P)"T~I <= I. 
n ~ O  

PROOF. 

Now 

N N - I  

(TE, P)"TnI = TnI + TE, ~'. (PTE,)"PTn I _-< Tnl  + T~,I _-< I. 
n - - O  n - - O  

N N 

Te ~ (PTs,)"PTE = ( I -  TE,)P ~ (Te,P)"Ts 
n ~ O  n ~ O  

N N + !  

= P E (TF.,P)"T~ - ~ (Ts,P)"T,~ 
n-o n ~ l  
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N 

(e I) ~ (TE,P)"TE + TE - ~+' = - (TwP) TE. 
r t ~ o  

Now (TwP) N+t Tef ~ 0 for every f E L by the first part. Let N ~ co to conclude 

T~PE = (P - I) ~ (TE, P)"T~ + T~. 
n = O  

References. The definition of P~ and its use for finding a cr finite invariant 

measure were suggested by P. Halmos  [8]. We followed here Harris  [9] for 

Theorem 7.3. Theorem 7.4 was proved by S. Horowitz [11] and A. Brunel [1]. 

The notion of "special"  sets was introduced in [17]. 

VIII. The Ornstein-M6tivier-Brunel  Theorem 

ASSUMrrION 8.1. The operator P is ergodic and conservative and E is a special 

set for P. 

REMARK. If P is an ergodic Harris operator  then, by Theorem 7.2, we may 

choose E to be very close to X. 

DEFINITION 8.1. S = Y.,=0 ( 1 / 2 ~  "+~)T~PE" on L~(E, El, h 1). 

By the Corollary of L e m m a  7.1, S l u  = 1E. 

LEMMA 8.1. Assume 8.1. If A C E  and A~(A)>0  then S1A >= elu where 
e = e ( A )  > 0 .  

PROOF. S1A >= (1/2N)X~=oTEP~IA >= (1/2rC)e(A)l~ if N = N(A) ,  by Defini- 

tion 7.2. 

From the lemma follows that 

lim inf f S" 1AdA~ >= e (A)  > O. 

Here  we deviate from our custom and quote, but not prove, theorem B of 

chapter IV of [5], to conclude. 

There exists a finite invariant measure rl, for S. 

Now r/ = r/TE and 

O= r I ( T ~ - S ) =  [rI ~,21-~ ( T E + " ' +  TEP~-')] ( T ~ -  TEPE), 

thus by replacing r/ by the term in brackets we may and shall assume 
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(,) 

Put ~ = E~=o'q (PTE,)" and recall Theorem 7.3. 

(**) 0 <= Iz is ~r finite, I~P = tz and 

Let us improve Lemma 8.1. 

S. R. FOGUEL 

= ~TE = ~lT~P~ = ~lS and ~l is fnite. 

#TE = ~/. 

Israel J. Math. 

LEMMA 8.2. Assume 8.1. There exists a constant a > 0  such that if A C E and 

hi(A)_-> 1 -  a then SIA >=alE. 

PROOF. Assume, to the contrary, that for each j => 2 we may find a set A i C E 

with A~(Aj)_- > 1 - 1 / 2  i but S1A, (x )<I /2  j on the set Bj with AI(Bj)>0 .  Now 

Yf=2A~(A;)_- < l  so if A = O~=2Ai then A:(A) >½, but S1A(X)_ -< S1A~(X)-- -< 1/2 j if 

X ~ Bj, which contradicts L e m m a  8. 

For the next few results we shall refer to the Harris decomposit ion of S" on 

L®(E, "~1, I~I)- 

DEFINITION 8.2. The Harris decomposition is denoted by 

S " = T ~ + U ,  

where Tn is the maximal integral kernel and all operators are on L~(E, El, At). 

LEMMA 8.3. Assume 8.1, then TIlE >= ½ale. 

PROOF. Let Kof(x)  = f f (y ) ;~(dy)  then, by Lemma 5.1 part (1), S ^ K0 is an 

integral kernel dominated by S, thus 

T,1E >= (S ^ K,,)I~ >= Sg + f ( 1 -  g)dA~ 

i f0=<g=<l~ .  Let A = {x : g (x )> = ½}AE.  Then g~½1A and on A ' ,  1 - g > ½ s o  

T,I~ ~ ½S1A + ½A,(A '). If A,(A ') => a then T,1E => a/2, while if A,(A ') < a then 

A r i A ) =  > 1 - a  and T,1E =>½S1A _-->½ale by Lemma 8.2. 

LEMMA 8.4. Assume 8.1, then T21A (x ) >= ½e(A )a l z (x  ) outside of a fixed set 

(independent of A )  of measure zero. 

PROOF. By Lemma 5.5, we have at every point 

TzlA(X) >= T,(S1A)(x)>= e (A  )T, l~(x) .  

Apply now Lemma 8.3. 

LEMMA 8.5. Assume 8.1. If k: is the density of T2 then k2 > 0 a.e. Z 2. 
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PROOF. Assume, to the contrary, that A 2(F) > 0 where F = {(x, y): kffx, y) = 
0}. Then h ( F x ) >  0 (Fx = {y: (x, y ) ~  F}) for a set of x 's  of positive measure. 

Thus T21Fx(X)= 0 on a set of positive measure which contradicts Lemma 8.4. 

Denote  for x E E and y ~ E 

Now 

f k (x )= A, ( {z :  kz(x,z)>=k} ) ,  

gk(y)= A~ ({z :  kz(z ,Y)>=l})  . 

/- 
1 = h~(E x E ) =  J hz({z: k2(x,z)>O})h,(dx) 

so hl({z: k2(x,z)>O}) = 1 for almost all x. Thus f k (x)~  1 a.e. and similarly 

gk(Y)~' 1 a.e. Hence: 

LEMMA 8.6. There exists an integer k such that the sets F = {x : fk (X ) >--__ 3/4} 

and G = {y : gk (y) ----> 3/4} have positive measures. 

If x E F  and y ~ G  then 

Thus 

therefore 

;t z : k 2 ( x , z ) <  t.J z:k2(z,y)<~- <~+~=~.  

1 

f k2(x,z)k:(z,y)h(dz)>= 1 2k 2 • 

LEMMA 8.7. Assume 8.1. f f  k4 is the density of T4 then k4(x,y)>= 
f l l ~ (x ) lG(y )  where 13 > 0 .  

PROOF. 

f 1 
k4(x, y )  > | k2(x, z)k~(z, y)A (dz) >= 

= ~ 2k 2 i f x E F a n d  y E G .  

LEMMA 8.8. Assume 8.1. Let r be the measure on ~1 given by r ( A ) =  

~3e (F)AI(G CI A )  then for every 0 <= g E L~ 

S~g ~ f gdr. 
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PROOF. SSg >- ST4g >- S([3 fogdA~lF) by Lemma 8.7. Now, by Lemma 8.1, 

$1~ _-> e (F ) l~  or SSg >- [3e(F)fagdZl but f6gdA, = f gdr. 
We may use now the Corollary to Theorem 4.3. 

Assume 8.1 and put Vf  = fEfdtz -- fEfdT! (as defined in (*) THEOREM 8.9. 

and (**)) then 

lirn II S" - V II = 0. 

Moreover there exists an integer n such that 

{f: f ~  L®(X), f supported on Eand f fdl.t= 0 } C  Range(T~ - Sn). 

PROOF. We need to prove the second part only. Let IIs"-vll<l. The 

operator  TE - V is a projection of L ( E )  onto {f: f ~ L®(E) and f fdlz = 0} and 

it commutes with S, thus the range of TE - V is invariant under S and the norm 

of S n restricted to this range is smaller than 1. Thus T~ - S" is invertible on 

{[: f ~ L®(E) and f fdlz = 0}. 

Note now 

Range (TE - S " ) C  Range(Te - S): 

T E -  S" = ( T ~ -  S)(TE + S + . . . +  S"-'). 

Also 

Range(TE - S) C Range(TE - TeP~): 

T _ S = ( T  _ T ~ p ~ ) ~ t  1 Tp~_,~ = 2 . + 1 ( T B + ' " +  e ~ s. 

Finally, by Theorem 7.4, 

Range (TE - TePs) C Range (I - P). 

Now if f E R a n g e ( / -  P )  then f = (I - P)h for some h E L~ and 

! ~ P"f = ! h - P~+'h f=<21lhll. 
I n=O 

Thus 

THEOREM 8.10 (Ornstein-M6tivier-Brunel Theorem). Assume 8.1 and let ix be 

the invariant (r finite measure of P which is finite on E (as in (**)). If  [ E L=(X) 
and is supported on E and f fdlz = 0 then I X~=o P"f{ <- const < oo. 
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R e f e r e n c e s .  R e s u l t s  s imi la r  to  L e m m a  8.8 ( a n d  p r e v i o u s  l e m m a s )  we re  

p r o v e d  by  O r e y  [18] a n d  N e v e u  [17]. T h e o r e m  8.10 was p r o v e d  for  r a n d o m  

walks  by  O r n s t e i n  [11]. M6 t iv i e r  e x t e n d e d  this  resu l t  to H a r r i s  o p e r a t o r s  in [14]; 

he  d id  no t  use  specia l  sets b u t  a m o r e  res t r ic t ive  class. T h e  g e n e r a l  resu l t  was 

p r o v e d  by  B r u n e l  [1]. A very  e l e g a n t  p roof ,  us ing  the  n o t i o n  of q u a s i c o m p a c t  

ope ra to r s ,  was g iven  by  H o r o w i t z  [12]. A n o t h e r  p r e s e n t a t i o n  is g iven  in [2]. In  

[7] G h o u s s o u b  s h o w e d  that  the  specia l  sets  are  the  larges t  class for  which  the  

T h e o r e m  holds .  
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