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HARRIS OPERATORS

BY
S. R. FOGUEL

ABSTRACT

A method is constructed which leads to a proof for both the “zero-two” law,
and the Ornstein-Métivier-Brunel Theorem for Harris operators. For the proof
it is not necessary to assume that the measure space is measurable and the
operator need not be given by a transition probability. We strove to make these
notes self-contained.

In these notes we attempt to describe, in a self-contained fashion, the theory
of Harris operators. In particular we shall prove here the ‘‘Ornstein—
Métivier-Brunel Theorem” and the ‘“‘zero-two” law.

Since the notes are intended for the nonspecialist we shall not assume any
knowledge of the theory of Markov operators but will prove the necessary
results. Thus only measure theory and elementary functional analysis are used.
One exception though — we shall use a classical result on the existence of an
invariant measure.

Most of the work on these notes was done while the author was supported by a
contract at the University of Maryland and also at the University of British
Columbia.

In the preparation of Section VIII I was lucky to benefit from many
conversations with Nassif Ghoussoub.

The notes are dedicated to the memory of Shlomo Horowitz, who was my
student and my colleague and whose research added many original and elegant
results to this theory.

I. Definitions and notation

Let (X,3,A) be a measure space and A(X)=1.
We shall study L.(X,2, ). Thus every relation will be in the “a.e.” sense
unless otherwise stated. Every function is assumed to be measurable, every set is
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282 S. R. FOGUEL Israel J. Math.

assumed to be in %, and every signed measure (or ¢ finite measure) is assumed to
be weaker than A.

DeriNITION 1.1. A Markov operator is a linear operator P, on L.(X,3,A)
such that

(1) if f =0 then Pf=0,

@) P1=1,

(3) if f. | 0 then Pf, —0.

The operator P acts on signed measures by
,u.P(A)=f P1l.da,

where 14 is the characteristic function of A.
It is easy to see that uP is again a signed measure weaker than A. Use the
Radon-Nikodym Theorem to define uP by:

ifdu = udA then d(uP) = (uP)dA.

This operator on L,(X, 2, A) satisfies:
(i) Ifu€elL, and f € L.. then [ (uP)fdr = [ u(Pf)dA.
(i) If u=z0 then uP = 0.
(i) f|uP|dAr = [|u]|dA.

To see (iii) let u = u*~u"; then

fluP[dA gf (u*P + u"P)dA =f u*(P1)da +f u~(P1)dA

é] u*+u)dr =j |u|dA.

It is easy to see that (i), (ii) and (iii) imply (1), (2) and (3) of Definition 1.1 if P is
defined as the adjoint operator.

The operator P may be extended uniquely to all nonnegative measurable
functions by:

if fo € L. and f, 1 f put Pf = lim Pf,,

ifu, € L, and u, 1 uputuP = lim uP.,.

References. The study of Markov operators was initiated by E. Hopf in [10].
A more detailed discussion of the above notions is given in chapter I of [5].
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II. The Hopf decomposition into conservative and dissipative parts

Let P be a Markov operator.
DEFINITION 2.1.

Q={f:0=f=1and Pf=f and lim P"f = 0},

D= U {x: f(x)>0}=sup{l;-0: fEQ},

feq

C=X-D.

The sup here is in the L. (a.e.) sense: Every bounded collection has a least
upper bound and it is the supremum of a countable subcollection, see [16]
proposition 11.4.1.

Let f€Q, then P*f =f, thus 2], P"(f — P*f)< k and the same inequality
holds for the infinite sum. Put A ={x: f(x)- P*f(x)= ¢}, then 1,=
e7'(f — P*f), hence 2;_oP"1, =const<wx. As k—> and ¢ —>0 the set A
converges to {x: f(x)>0}. Since D is a countable union of such sets it follows
that:

TueoreM 2.1. D = UL, D, where 5., P"1p, is bounded.
If 0=u € L, then

j (i uPﬂ) 1p,dA =f u (20 P"le> dA < o,

n=0
Hence =} _,uP" is finite on D, for every k, thus:
Tueorem 2.2. If u € L, then Z7_,uP" is finite on D.
Let us consider the set C now.

Lemma 2.3. Let 0=f&€ L.. be such that X, P'f= K <w then Z;_,P"f
vanishes on C.

Proor. K7'Z;_,P"f € Q and, by definition, vanishes on C.
LemMA 2.4, Let 0=f€ L. and Pf=f{, then Pf(x)=f(x) if x € C.

Proor. The function f— Pf satisfies the condition of the previous lemma,
hence vanishes on C.

Let us improve these two lemmas.
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THEOREM 2.5. Let f=0 then Z7_, P"f assumes the values zero or infinity,
only, on C.

Proor. Put h =min(l,Z;.,P"f) then 0=h =1, Ph=h and P"h(x)—0
whenever 2,0 P"f(x) <. But, by Lemma 2.4, h(x)= Ph(x)=---= P"h(x) if
x € C. Thus, if x € C then either 2,_o P"f(x)=® or h(x)=0 in which case
Zh-0 Pf(x)=0 too.

THEOREM 2.6. Let 0=f < and Pf={f. Then Pf(x)=f(x) if x € C.

Proor. Z27_oP"(f — Pf)=f < thus, by Theorem 2.5, the sum vanishes if
x€C:on C, f=Pf.

CoroLLARY. If x € C then P1(x)=1.
DeriniTion 2.2, The operator P is called conservative if X = C(D = ).

THEOREM 2.7. P is conservative if and only if: 0= f =1 and Pf = f implies

Pf=f.

Proor. If P is conservative use Theorem 2.6, if D# & choose a nonzero
function in .

CoroLLARY. If P is conservative then P1=1 and P* is conservative too.

Proor. The first part follows from Theorem 2.7. Now let 0 = f € L.. with
0=(—-P*)f, then O=(I-P)(I+P+---+P“")f and equality holds by
Theorem 2.7.

THEOREM 2.8. Let P be a conservative operator and f =0 and Pf = f. Then
Plix:fxr>ar = L pesy>ay -

PROOF.
f-a=(-a)-(f-a) =P[(f-a)]-Pl(f-a)]
Thus P[(f—a)]=z(f—a) and (f— a)” = a. Apply Theorem2.7toa — (f—a)”
to conclude that P[(f—a)|=(f— a)". Therefore P[(f—a)’]=(f—a)" too.
Thus P[min(1,n(f — a)")] = min(1, n(f — a)”) and, again, equality holds. Let

n — o to obtain the result.

DeriniTion 2.3, The operator P is called ergodic if Pl. =1, implies
AMAYQ-A(A)=0.

CoroLLARY. Let P be ergodic and conservative. If f=0 and Pf = f then
f = const.
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Another characterization of ergodic and conservative operators is given by:

THEOREM 2.9. Let P be ergodic and conservative and f = 0, but not identically
zero, then X5 P"f = oo,

Proor. Itisenough to prove the result when f = 1, where A(A) > 0. Put
N 1 3
AN:{x:EP"lA(x)zﬁ}, Am={x:2P"1A(x)>O}.
n=0 n=0
Then Ax T A. and
N
lay=N Y P'la.
n=0

Thus P1,,(x)=0if x & A. or Pls, =14_. Let N—o to conclude Pls_ =14

=3

thus, by the Corollary to Theorem 2.8, A.=X. Finally X =C so if
SnoP"1a{x)>0 then Z7_, P "la(x) =00,

References. The results described in this section are all classical, most proved
in [10], see also [16] and [5]. This presentation is different since the Hopf
Maximal Ergodic Lemma was not used.

III. The definition of a cycle
Throughout this section we shall use
Assumption 3.1. Pl=1, and if f=z0 and Pf=0, then f =0.

Note that if P is conservative then Assumption 3.1 holds.
If Pf=0 then Z,_,P"f = f <o, so the sum is zero or f =0.

Lemva 3.1. Let Pla, = 15 and Pla,= 1, then Plaua,= 1s,us,

PROOF.
131 + 132 = P(1A1+ 1A2)§ PlAIUAZZ P(max(lAl, lAz))
Zmax(Pla, Pl.)=max(ls,1s,) = lgus,.

Thus if x € B, U B, then 1= 1g,05,(x) = Pla,ua(x)=1. On the other hand if
X E B] U B2 then 0§P1A1UA2(X)§ 131(x)+ 132(x)= O

LemMa 3.2.  Let Psatisfy Assumption 3.1 and let P14, = lg, and P14,= 1, If
B] C Bz then A] C Ag.
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PrROOF. Pla,ua,= 1s,us,= lg, = Pl,, Thus
0=Plaua,— Pla,=Plaua,a,.
Hence, by Assumption 3.1, A,U A, = A,.
LemMA 3.3. Let P satisfy Assumption 3.1. If 0=f=1 and Pf=1g then

f = lusosa-

Proor. Put A ={x: f(x)= a} for some a>0. Then f=Za "1, and 15 =
Pfza 'Pl, or P1,(x)=0if x € B'. Thus P14 =1s. Let a >0 to conclude
15 2 Plypy-0 2 Pf =15

Let P be an ergodic and conservative operator. The operator P* is conserva-
tive again but may fail to be ergodic. Put

0={A PklA =1A}
By Lemma 3.1 6 is a o subfield of . If A € 6 then
0=(I-P)I+P+---+ PN,

hence I+ P+---+P* "1, =const or (I + P+ ---+ P“'}1, = 1. This implies
that 6 is atomic: otherwise we may find a sequence A, € § where A, | and
A(A,)— 0 thus part (3) of Definition 1.1 is violated. Let B, be an atom of 8. By
Lemma 3.3, P"15,is again a characteristic function. Put P"15, = 15, 0= r < k. By
Lemma 3.3, B, is again an atom of 6.

THeorReM 3.4. Let P be an ergodic and conservative operator. Given an integer
k there exist sets By, B,," -+, By, where d l k, the sets are disjoint, U::; B =X
and Plg =15, where B, = B,. If P“14 = 1,4 then A is the union of some of the
sets B;.

Proor. Define B, as above and let d be the smallest integer for which
P%lg,=15.lf 0=i<j<d and B, = B; then 15,= P* 15 = P* Y14, a con-
tradiction. Now d | k and 222} 1, is invariant, hence it is identicaly one. Note
that B; N B, = J since they are atoms. Now if A € 8 then A N B, is either B; or
empty since B; is an atom.

Let P be an ergodic and conservative operator and put

DermntTion 3.1, X, ={A: P"1, is a characteristic function}.

Then
(a) . is a o subfield of 3: Lemma 3.1.
(b) 2. D 3..: Lemma 3.3.
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DerNITION 3.2, 30=(._, 3.

Again 3" is a o subfield of 3. Let A € %" and 15 = Pla. Then P*1p =
P**'1, is a characteristic function, hence B € %" too. By an obvious abuse of
language we shall write PA = B. Now we saw

pARES D AR I 25 I
Derinimion 3.3. 3@ =, _,P"3®,

By Lemma 3.1 P*3% is a field, hence so is 2?. Now if B, € P23 and B, 1 B
then 15, = P*1,_and, by Lemma 3.2, A, 1 A thus P*X" is a ¢ field and so is
3.

Let us see how P acts on 2®: If A € 3® and B = PA then A € P*3®, hence
B € P**'S® for all k, thus B € 2@,

Again let A €3®, then A € P*"'S" or 1, = P(P*1g,) where E. € 2. By
Lemma 3.3 P*1g, is a characteristic function. By Lemma 3.2 P*1g, = 1g is
independent of k. Thus E € @ and 14 = Plg or P2? = 3. Let us summarize.

THEOREM 3.5. Let P be an ergodic and conservative operator, then 3? is a o
subfield of % which is mapped by P onto itself.

Later we shall prove that if P is a Harris operator then 2, and thus 3® too, is
atomic (Lemma 5.3). This motivates the next result.

THEOREM 3.6. Let P be ergodic and conservative. If 2? is atomic then
3P ={A, A, -, As} where A, are disjoint, U{Zs A; =X and Pl =14
where A; = Ao

i+l

Proor. Let A, be an atom of £® and put A, = P‘A,. Since P is an
automorphism of 2@ onto itself the sets A; are atoms too. We cannot have them
all disjoint since this would imply =-, P'1,, = 1 contradicting conservativeness.
If P'A,= P'**A, then, by Lemma 3.2, P*A, = A,. Let d be the smallest integer
for which P*A, = A,. Then 2{; 1,, is invariant hence identically one. Finally, if
A €2? then A N A, is either empty or A,.

COROLLARY. Let P be conservative and 3® be atomic. 3 is trivial if and only
if P* is ergodic for every k.

Proor. If P is ergodic then A,= X. If P* is not ergodic, for some k, then,
by Theorem 3.4, 3® is not trivial.

The decompositions described in Theorem 3.5 and Theorem 3.6 are called
cycles.
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If 3@ is atomic then the restriction of P* to A, has ergodic powers and the

Corollary applies.

References. Similar notions are discussed in [13], [15] and [18].

IV. Convergence of the iterates
The collection of Markov operators is ordered:
P,=P,if Pf=Pyfforall 0=f€ L..
Let us use
DEerFiniTION 4.1. For every 0=f€ L.
(PAP)(f)=inf{Pg + P(f—g): 0=g =f}.

It is clear that P, A P,= P, and P, A P,= P,: choose g =f or g =0.

If Q is a Markov operator and Q = P,, Q = P, then, for each 0=g =,
Qf=Qg +Q(f—g)=P.g + P,(f — g). Thus Q = P, A P,. Let us establish that
P, A P, is additive for nonnegative functions. This will show that it can be
extended to a linear operator on L.. Let 0=f,, f,€E L.and 0 =g = f, + f,. Put
g:=min(g, f,) and g,=g — g, then 0=g,=f, and 0= g. = fo: if g:(x)=g(x)
then gx)=0= fox). If g:i(x)= fi(x) then 0=g(x)~ fi(x) = ga(x) = fox).

Additivity is now immediate.

Later we shall study

DerFNiTiON 4.2. Forevery0=f€ L., (P, v P,)(f)=sup{P.ig + P(f—g): 0=
g=ft

This is the smallest linear operator which is greater than both P, and P.. It may
fail to be a Markov operator since (P, v P;)1 may be greater than 1 at some

points.

AssumpPTION 4.1. Let P, Q, and Q, be commuting Markov operators such that
(a) P1=Qll=021=1
(b) There exist integers r; and Markov operators R; such that

Pz RQ; and P"z=RQ..
(c) Ry-+-R,#0 for all n.
From (b) follows
P'=RQ,+S:=RQ:+S=R3(Q:+ Q) +8
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where S/, S7 and S are all nonnegative.
Let us prove, by induction, that

(1) Pr|+--4+',,=Rl...R”§]"T(QI+ 02)"+Sn; S,.ZO
If n =1 take S, = $,. Now, induct
et g = Rl [P Rn -zln (O] + 02)"P'n+| + S"P"‘”
= 121 o R"P'..H -il-"- (Ql + QZ)" + S"P'n+l
5 1
=Ry Ry |Rua (Qi+ Q)+ 50| 55 (Qi+ Qo
+ S, P

1 +
= R. e Ran+l 2TI (Ql + Qz)" l+ Sn+l

where

(i) S.e1= Ry R.Sau zin (O + Q)" + S, P12 0.
Equation (i) may be improved to

(i) PO T 5 (Qut Qi 4 S T 20
If j=1take T, =R, -+ R, and use (i). Induct

; 1
(r 4+ +r )+1) _,
pt T Ti_zn

(Qi+ Qa)'P" 't SLPT
P+t 1 n
= TP ~2—,.(Ol+ Q)
+SI,| [RI' . R”Z_E(Ql‘*' 02)" + sn:l

—_ T 1 n j+1

= L4 'é?.‘ (Ql+ Qz) + Sn
where
(iv) T.i= TP "+ S/R -+ R,.

THEOREM 4.1. Let Assumption 4.1 hold. If P is a conservative operator such



290 S. R. FOGUEL Israel J. Math.

that P* is ergodic for all k then
sup{P"(Q.— Q))f: —1=f=1} —0.

Proor. Note first that if —1=h =1 then
P"H(Q2_ Q)h =P"(Q.— Q\)Ph = SUP{Pn(Qz“ Q)f: —1=f= 1}.

Thus the sequence of suprema is monotone and it is enough to establish

convergence of some subsequence. Apply now (i) to the function 1: S,.1=

1-R,---R.1,0r S, 1 =1 but we do not have equality by part (c) of Assumption

4.1. Fix n, to be chosen later, and put g = lim; ... $21. Then 0 = g =1 and, by (i),
Prl+~--+r"g = ng = g

Since P* is ergodic and conservative for all k, we must have g = const and
R, - R.g =0 thus g =0. Let us apply (iii) to the function 1: 1= T;1+ S§’1 or
T;1=1 thus | T;|| = 1. Use (iii) again for —1=f=1:

P('l"'"'*'n)f(oz Q )f (Ol + QZ) (Qz Q])f+ S]n(QZ_ Ql)f
Now,

|S4(Q:~ Q)f| 52841 —0

by the above remarks. On the other hand

| (0)-(2 )]

by the binomial formula. The sequence () increases for 0=k =n/2 and
decreases for n/2 = k = n. Thus the sum is bounded by 27"(.}2) which is, by the
Stirling Formula, O(1/V n) from which the theorem follows.

T3 (it Q) (Qm Qs g3 2

COROLLARY. Let P’ be ergodic and censervative for all j. For a fixed k either
sup{(P"** - P")f: —1=f=1}=2
for all n and almost all x (equivalently P" A P™** =0) or

lim sup{(P"** - P")f: —1=f=1}=0.

Proor. Put

h, = sup{(P"** = P")f: —1=f=1}
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and note that:
(1) 0= h, =2: obvious.
) hps1=h,:if —1=f=1 then

(™1 — P)f = (P"** — P")Pf < h,
(3) hsr=Ph,.: if —1=f=1 then
(™% — Pr*)f = P(P™* — P")f < Ph,,
@) (P" A P™ )1 =1-1h,:
(P" AP )N =inf{P"g+P""*(1-g):0=g=1}
=1-sup{(P*""* - P")g:0=g =1}
= 1=dsup{(P™* = P")f: —1=f=1}

since g =3(f + 1) where —1=f=1. Note h, =2 if and only if P" A P"** = 0.
Let h = lim A, (by (2)), then Ph = h (by (3)) hence h = const = a. If « = 2 we are
done; let a <2:

n prrkyy 11 _a
(P" A P™ )1 =1-5h, 1 1-5>0.
Apply Assumption 4.1 where Q,=1 and Q,=P* and R, = P" A P"** (the
choice of n; will be explained later). Now P%** = R, and P™""* = R,P* so we take
r,=n; + k and it remains to verify (c) of Assumption 4.1.

If R,---R,,1#0 for an appropriate choice of ni,---,n, then
R, Rn(P" AP"+k)1——><1—%> Ri - Ru1#0

and n = n,,., may be chosen so that the left-hand side does not vanish.
Following D. Revuz put

G={k: limsup {(P"** ~ P")f: —1§f§1}=0}.

n—o

IfijeGtheni+j€G. lfi+j€G and i€ G then jEG:
Pn+]' _ Pn = (Pn+i+j — Pn)_ (Pn+i+i _ Pn+i).

Thus there exists an integer d such that G = multiples of d.
If d# 0 consider the subspace of L,
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K ={u:||uP"||—> 0}
If u=v(P*-1I) then
luP™ || =||o (P - P")Iléf o [sup{(P"** = P")f: ~1=f=1}dx —>0.

Hence LI - P*)CK and by the Hahn Banach Theorem and since P* is
ergodic and conservative we have

iff udA =0 then |uP"||— 0.
Let us assume a stronger version of Assumption 4.1 by taking ., =r, Ry =R
(independent of i) and R1= const >0.

AsSUMPTION 4.2. Let P, Q. and Q. be commuting Markov operators such that
(@ P1=Qi1=Q,1=1.
(b) There exists an integer r and a Markov operator R such that

P"z RQ, and P =z RO..
(c) Rl1zconst=46>0.

Since Assumption 4.2 implies Assumption 4.1 we immediately get:

(i*) P’”=R"2—1n(01+ Q) +S.; S.=z0.
(ii*) S = R"s’zin (Qi+ Q)" + S.P"
(iii*) PV =T, 21 (Q:+ Q) +Si; T =z0.
@iv*) Tim=T,P" +S'R"

As before || T;||= 1, from (i*) when applied to 1, follows

S.1=1-R"1=1-8"<1.
Thus

1P%@:- @0l 2| % @1+ (@ au| + 21

and the first term is O(l/\/r-t) while the second term is bounded by
(1-8"y =0.



Vol. 33, 1979 HARRIS OPERATORS 293

THEOREM 4.2. Let Assumption 4.2 hold. Then
IP"(Q:— Q)| —0.

Proor. {|P"(Q,— Q)| is monotone and the theorem follows from the above
remarks.

CoroLLARY. Let P be a Markov operator with P1 = 1. Let k be a fixed integer,
then either |P"** — P"||=2 for every n or lim,_.||P"** — P"|=0.

Proor. Let | P™™* — P™| <2 for some m. Put R =P™ AP™** Q,=1, Q,=
P* and r=m+k. Note that R1=1-jsup{(P"*"*-P")f: -1=f=1}=
1—3|P™"* - P™||>0.

Thus Assumption 4.2 holds and Theorem 4.2 applies.

As before, if G ={k:[|P"** —P"|—0} then G consists of multiples of a

fixed integer.
Let us conclude this section with some results that will be useful for the study
of Harris operators.

AssumMPTION 4.3. Let P, Q, and Q; be commuting Markov operators such that
(a) P1=Q,1=0Q,1=1.
(b) There exist an integer r and a Markov operator R such that

P"=zQ,R and Pz Q:R
(¢) R1=const=§>0.

Note that (c) is much stronger than (c) of Assumption 4.2,
The same argument as before will show

(i**) P™ = zi (Q:+Q)"R"+S,; S.=z0.
(i**) o= Zi (0, + Q,)'SR" + P'S,,
(iii**) pri = zl (Qi+ Q)T +Sh T =0
(iv**) T...= P™T, + R"S,

Apply (i**) to the function 1:
1=8"+8S.1
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(note we used equality: R1=6). Now T,1=R"1=8"=const= ;. Let us
prove, by induction, that T;1 = const = B;: by (iv**) applied to 1
T1=B;+6"(1—-8") =const = B,,..
Apply now (iii**) to the function 1:
1=5+S8.1 or B =1

hence || T;]|= 1. Hence we may use (iii**) to conclude

1(0:- Q)P™ = {5 (@2 Q)(Qi+ Q| + 2018, I

and as before

THEOREM 4.3. Let Assumption 4.3. hold. Then
!_i_r_‘l ”(Qz" Q)pP" “ =0.

CoroLLARY. Let P be a Markov operator with P1=1. Let u be an invariant
measure for P namely:

0=y, w(X)=1 and f (Pf)dp = f fdu.

Put Vf = [fdu, V is a Markov operator. Let there exist a measure 7 satisfying
0=r1,0<7(X)=1 and if Rf = [ fdr then P" = R for some integer r. Then

lim | P* ~ V|| =0.

Proor. Note first that PV = VP = V?=V, Also P1=V1=1 Now Rl=
7(X)=const. Also P'Z R = PR = VR and Assumption 4.3 holds for Q, = P
and Q.= V. Hence |(V—-P)P"|—>0 by Theorem 4.3, but (V- P)P" =
V — P"+1.

References. The Corollary of Theorem 4.1 is the “zero-two’ law of Ornstein
and Sucheston [20]. We followed here [6].
V. Harris Condition

Let us introduce some terminology.
A ““density” is a function k on X X X such that 0=k (x,y) and it is jointly
measurable and | k(x, y)A(dy) is a bounded function of x.
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The “integral kernel” of a density is given by

K= [ k) fon@y),  feL.

If K1=1 then K is a Markov operator. Now

L K1pdA =HAB k(x, y)A(dy)A(dx) = K (A x B)

where K is a measure on (X X X,3 x 3) given by dK = kdA>.
Let P be any Markov operator and define P on rectangles of X X X by

P(A ><B)=f PlgdA.
A
In order to extend this set function, linearly, to the field of all finite unions of

disjoint rectangles (see 1.6 and II1.1 of [16]) we have to show:

If A x B =U_, A X B, where A, X B, are disjoint then
P(A xB)=>, P(A xB,).
i=1

Now A =], [AiU(A - A)]= UE, where the sets E; are disjoint and for
every i and j either E; C A; or E;N A, = J. We may assume that A(E;)>0
(discard the others). Now

la(x)ls(y)= ; La,(x)1s,(y),
multiply by 1g(x) and evaluate at x € E; to obtain

18= 2 1Bi; P15= 2 P].B'.

i: BjCA; i E;CA;

Thus

f Plydr = D, j Plgdr =, PlgdA.
E, E,-

it Ejca, T JENA;

Sum over j:
f P1lgdA =2j PlgdA.
A i A

We shall use P to denote the extension of P too.

LeEmMA 5.1. 'Let P be a Markov operator and K, K, and K, be integral kernels
of the densities k, k, and k.
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(1) If P =K then P is an integral kernel too.

(2) K=K, if and only if ki =k, a.e. A°.

(3) PK and KP are integral kernels.

4) K.vK, (KiAK3) is an integral kernel whose density is max(ki, k)
(min (ky, k2)).

Proor. (1) If P =<K then P =K. Now K is continuous at & (if E, €3 x X
and E, | @ then K(E,)— 0). Thus P is continuous at & too and has a unique
extension to all of 3 x 3. The extension will be denoted again by P. By the
uniqueness of the extension of K — P we must have P = K on all of % x £. Thus
P is a measure (countably additive) and P < A2 If dP = rdA* then r Z 0 is jointly
measurable and

L PlgdA =L L r(x, y)A(dy)A(dx)

hence P1s = [sr(x,y)A(dy) and P is an integral kernel.

(2) Let ki< k,a.e. A% then for almost all x, A{y: ki(x, y) = kx(x, y)} = 1. Thus
a.e. Kila(x)= Ksla(x).

Conversely, let K, = K, then K, = K, on rectangles and, by unique extension,
on 3 X3 thus k, =k, a.e. A>

(3) Let ko=1 and K, be its integral kernel.

If k = const then K = const K, but (PK,)f = (f fdA)P1: The integral kernel of
the density q(x,y) = P1(x).

KoP)f = [ BNOIME)= [ APYOIIAEy):

The integral kernel of the density g(x,y)= (1P)(y).

By part (1) we have, if k is bounded, that PK and KP are integral kernels. If k
is not bounded put k, = min(k, n) and let K, be its integral kernel. Let g, be the
density of K.P (PK,). The sequence q. increases by part (2). Let g« limg,. If
0=fe L. then

[ 4 f oM@ = tim [ 4. )M @)

= lim (K.P)f(x) = lim K. (Pf)(x) = K(Pf)(x) = (KP)f(x).

(4) Note that K, v K, = K, + K; thus, by part (1), it is an integral kernel. Let
ks be the density of K, v K,. By part (2), ks = max (ky, k2) 2 ki, i = 1,2; again by
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part (2) the integral kernel of max (k, k;) dominates both K, and K, and thus
K, v K,. Use (2) again to conclude max (k,, k2) = k.
Let P be a Markov operator and put

¢ ={k: kisthe density of K where K = P}.

By part (4) of the previous lemma if k,, k, € ¢ then max(k,, k») € ¢ too. Thus if
a =sup{ffkdAr®: k € ¢} then a =lim[[k.dA*> where k,E ¢ and k, 1. Put
q =limk, and let Q be its integral kernel. By Fatou’s Lemma Q = P or g € ¢.
Now [fqdA* = @, thus if k € ¢ then max(k,q) € ¢ and [f max(k,q)dA\’S a =
[ qdA?, thus g is the maximal element of ¢.

THEOREM 5.2. Every Markov operator P can be decomposed to P = Q + R
where Q is an integral kernel and R is a Markov operator that does not dominate
any integral kernel.

DEeFINITION 5.1. The above decomposition will be called the Harris Decom-
position. We shall denote the Harris Decomposition of P" by P" = Q, + R..

DerINITION 5.2, The Markov operator P is called a Harris operator if
(1) P is conservative.
(2) If A(A)>0 then 27_, Q.14 is not identically zero.

Note (2} is equivalent to
YIf0=f€ L.and £7_, Q.f =0 then f=0.
Recall Definitions 3.1, 3.2 and 3.3.

LemMa 5.3. If P is a Harris operator then 3 is atomic.

Proor. Assume to the contrary, A €3 and A = Uz, A.. where
A €39, A(A..)=2""A(A) and A, .., are obtained by splitting each set A,
into two sets, in ", of equal measure. The sets A, ,, 1 =i = 2" are disjoint, thus

o
> PH1, (x)=P*1,(x)=1,
=1

and each term in the sum is either zero or one by the definition of 2. Thus for
all i, with at most one exception, P*1, (x)=0. The same holds for Q.: For a
fixed k and x

OLa()= Qula )= | aulxyA(@)
where j = j(x,n) and the sets A;, decrease as n increases. Thus O, 1.(x)=10
and, by Definition 5.2, A(A)=0.
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RemARk. The invariant sets are in £, hence if P is a Harris operator its
collection of invariant sets is atomic and we may assume with no loss of
generality that P is ergodic too.

Note that 3® is atomic too thus, by Theorem 3.6, the restriction of P¢ to one
of the atoms of % has ergodic powers.

Lemma 54. Q.im =2 P"0., =2 Q,.Q.; Qusm = Q.P™ and R, = R.R,..

Proor. P"™" =(Q.+ R.)}(Q. + R..)=P"Q, + Q.R.. + R.R,.. The first two
terms are integral kernels by part (3) of Lemma 5.1.

If one chooses a particular version of gi (x, y) then Q.f(x) is defined at every
point x, by [ g« (x, y)f(y)A(dy), even if f is defined a.e. only. Thus Q. (P™f)(x) is
everywhere defined:

0= [ @ IE NN = [ (a5 IPTIO)GINEY).

Let us prove that [q. (x, - )P™](y) is the density of the integral kernel Q.P™. By
the above remark it suffices to show that it is jointly measurable.

Consider the collection of densities r(x, y) such that [r(x,-)P](y) is jointly
measurable.

It is clear that this collection is linear and monotone, thus to show that every
measurable function satisfies this condition it is enough to show that the
characteristic function of every set in % X % does.

Let us study the collection of sets, E, in % X X% such that [1(x,-)P](y) is
jointly measurable.

Every rectangle has this property. It is a monotone collection.

By theorem 1.4.2 of [16] every set in 2 X X has the desired property. Let us
choose a version of g. such that Q... f(x)= Q.(Pf)(x) at every point x if
0=f€ L.. Suppose we chose g, -qi, then P**'= QP + R.P. Choose the
density of QP at every point as above and add to it the greatest integral kernel
dominated by R\P.

Therefore

LEMMA 5.5. We may choose versions of the densities q. in such a way that, if
0=f€ L., then
On+mf(x) ; Q'l (me)(x)

at every point x.
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Proor. We proved the lemma for m = 1. With this choice we have
Qnsm+if(X) Z Quim (Pf)(x) Z Qu(PTPf)(x)

by an induction argument on m.
Throughout the rest of the paper we shall assume that g, satisfy Lemma 5.5.

THEOREM 5.6. Let P be an ergodic and conservative Markov operator. P is a
Harris operator if and only if Q. # 0 for some k.

If P is a Harris operator then

(@) Q.111 ae.

(b) If A(A)>0 then 27_, Q.14(x) = at every point x for which (a) holds.

Proor. Let Q,#0 and A(A)>0. By Lemma 5.4
Y QuenlazZ QY P14 2 Q1 #0.
n=1 n=1

Thus P is a Harris operator.
(a) R,1=1 and, by Lemma 5.4,
R.11=R.Ri1=R.1.

Put g =lim,.R.1, then 0=g =1 and
P‘¢= Qg +Rgzlim RiR, 12 lim Ri.m1=g.
Thus, since P* is conservative, P*g = g and Q.g = 0, by Harris Condition g = 0.
(b) Let Q.. 1(x)>0 (by (a)), then
3, Onenla(®)2 Qu (2 P"14) (2).
n= n=1

Now, 27_,P"1, = N1 for every constant N thus
S Qu1a(x)= NQ,.1(x)
n=1

and the left-hand side must be infinite.

References. The idea of the decomposition goes back to W. Doeblin [3]. A
similar idea may be found in [21]. Our description is closer to Harris’s [9].
Lemma 5.3 is due to J. Feldman [4].

In our study we do not assume that P is given by a transition probability and
that % is separable, which complicates the arguments considerably.

See also [17] and [18].
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VI. Harris Lemma

Let P be an ergodic Harris operator and let Q,# 0. Choose &£ >0 so that
0<A*({(x,y): Ge(x,y)> &}).

Thus 0 < fA({y : qc(x, y) > €})A (dx) and the integrand is greater than 8 >0 on
a set E with A(E)>0. Let A(A)>1-§/2 and x € E then

AMA'U{y: g (x,y)= s})§g+1—8=1—g

or

NIOO

AAN{y:q(x,y)>e})z=
Thus

P“lA(x)zL 9 (YA (dy)Z (A Ny: 4u(x,y)> )23 eb

Let B be any set with A(B)>0. Choose N so large that if A=
{x:ZN_,P"15(x)=1} then A(A)>1-58/2. Now 1, =3, P"1; hence

X 1
> P12z P*1, z 5 edle.
n=1

Let us summarize.

LemMA 6.1.  Let P be an ergodic Harris operator. There exists an integer k, two
positive constants € and 8, and a set E with A(E)>0 such that:

(@) Ifx€E then A({y: qu(x,y)>e})>4é.

(b) IfA(A)>1-8/2 then P*1, =2}&81..

(c) If A(B)>0 then there exists an integer N = N(B) such that =) o P"15 =
3e81c.

DErFINITION 6.1. A set E is called “reserve” if A(E)>0 and for every set A
with A(A) >0 there exists an £ = ¢(A) >0 and an integer N = N(A) such that
2"N=0P"1A ; EIE.

Lemma 6.1 shows that an ergodic Harris operator has reserve sets. Let E be
reserve and put

EK={x i 1E(x)>1}
Then
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If A(A)>0 find £ >0 and an integer N such that 2}, P"1, = ¢1g, hence

N+K

leK_ez Pl. = 2 2 P, =(K+1) D, P,
=0

k=0 n=0

since each power k + n repeats itself at most K + 1 times. Thus E; is reserve
again and Ex T X.

THeoOREM 6.2. Let P be an ergodic Harris operator, then there exist reserve sets
Ex with Ex 1 X.

In the rest of this section we shall use the “zero-two’’ law for Harris operators.

LEmMMA 6.3. Let P be a Harris operator such that P" is ergodic for every n. For
every fixed integer k, U, _.{(x,y): gu (x, y) >0} = X X X a.e. A%

Proor. If Q;#0 then Q.. = QP’ hence Q;..# 0 too. Thus P* is again a
Harris operator with ergodic iterates. Let us then prove the lemma for k = 1. By
Theorem 5.6 there exists a set Y with A(Y) =0such thatif A\(A)>0andx, €Y
then 25, Q,14(xo) = . Note we assumed, as in Lemma 5.5, that Q,f(x) is
everywhere defined. Let us study the following situation:

*) X% &Y and q.(x0,y)=0 foralln

By Lemma 5.4 (*) implies

0= [ (30 2)am (2 A @D) = [ a0, 2)am (2 YN (d2)

where A, ={z:¢q.(z,y)>0}. Thus ¢.(x5,z)=0 for almost all z € A, or
Q.1,,(x0)=0. Since x, € Y we must have A(A.. )= 0. Thus (*) implies

(%) g-.(2,y)=0 for almost all z.

Given any set A we have

0a)@)=[ [ a@m@na=[ [[ we@]ia

40%) () - [ aGzymez)

or

and if (**) holds then
gAQn[
(=0
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Let
E={(x,y): q.(x,y)=0 forall n and x € Y}.

For a fixed xo € Y, E.,,={y: g.(x0,y) =0 for all n}, then
d(AQ.
Q) E)= [ Ha2) () (dy) =0

or, by Theorem 5.6, A(E,)=0 and A*(E)= [ A(E.)A(dx)=0.

THEOREM 6.4, Let P be a Harris operator such that P" is ergodic for all n. Then
lim sup{(P""' - P")f: —1=f=1}=0.

Proor. Let ¢,#0 and choose k > r. By the previous lemma

A% y): e (%, y) >0} {(x, ¥): ¢, (x,y)> 0D #0

for some n, thus Q.. A Q,# 0 hence P™ A P’ # 0 too and, by the Corollary to
Theorem 4.1, we have

lim sup{(P"" - P™)f: —1=f=1}=0
for some integer j. Let d be the smallest such integer; if d # 1 then P™*' A P™ =
0 for every n and m. Thus Qa1 A Qs =0 too.

Fix m so that Q4. # 0. By (4) of Lemma 5.1 we have min (qma+1, gna) = 0 for
all n which contradicts Lemma 6.3.

References. Lemma 6.1 was proved by Harris in [9].
The notion of reserve sets was defined in [1].
Theorem 6.4 was proved by very different methods in {13].

VII. The induced operator

Let P be a Markov operator and E a fixed set with A (E) > 0. For every set A
with A(A)>0 put Taf = 14f; then T, is a Markov operator.

DeriNITION 7.1, Pe = 25, (PTe)"PTs.
Note that

i (PTe)"PTel = 2 (PTe)* (P - PTe )1

N+1

N
= 20 (PTe)"1— Zl (PTe)"1=1-(PTe)N"' = 1.
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Thus P:1=1 and P: is a nonnegative linear contraction on L.. Now Pg is a
Markov operator since if 0 = f = M then

Pef = Z (PTe)PTef +M 3, (PTe)'PT:,
n=N+

hence part (3) of Definition 1.1 holds too. The operator Pg is a Markov operator
on L.(X,3,A), but we shall use the operator TePe on L.(E, %, A{) where 2,
contains all measurable subsets of E and for A CE, A (A)= A(A)A(E).

Lemma 7.1. Let 0=f€ L. and f = Txf, then

iMz

and

Mz

TeP'f = 3, (TePe)'f.

Mz

n=0

Proor. The second inequality follows from the first, since Py = PgTg thus
(TEPE)" = TEPE NOW PE = PTE + (PTE')PE, hence P = PTE + PTE' =
Pg + (PTs)(I — Pe). Let us prove the inequality by induction:

N+1

ZPf f+P2Pf
§f+Pinf

=f+ (Pg+ PTe(I — Pg)) ﬁj P:f

2

+1
= > Pif+ PTe(f - PE'f).
0

Now T f =0 and the lemma follows.

CoroLLARY. If P is ergodic and conservative then so is TePg, hence
TEPE IE = 15.

DeriNiTION 7.2, A set E is called “special” if A(E)>0 and for every A CE
with A (A) > 0 there exists an integer N = N(A) and a constant ¢ = £(A) where
e >0 and N

By Lemma 7.1 and Theorem 6.2:

IIV
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THEOREM 7.2. Let P be an ergodic Harris operator, then there exist special sets
Eyx with Ex 1 X.

THeoReEM 7.3. Assume A(E)>0 and Z%.c P*1:(x) >0 at every point. If 1 is
a finite measure such that n = nTg and 1 = nTgPe then p = 250 (PTg)" is o
finite and satisfies uP = p.

Remark. The assumption holds if P is ergodic and conservative.

ProoF.
pP=pPTe + pPTe = Y n(PTs)"PTe+ 2, n(PTe)" =nPetp—n=p
n=0 n=1

Since T]PE = nTEPE =7
Now [ P*1gdu = [1edu = n(E)=1, hence

u ({x: P"lE(x)é-'I;}><oo

and u is o finite since Z5_o P*1¢ >0 implies

U {x: P"1,;(x)§%}=X.

kn

Note that uTe = 7.
The next result will be very useful in Section VIII.

THEOREM 7.4.

Te = TePe =(I- P) 20 (Te P)"Te

and
20 (TeP)'Te1=1.
ProOF.
N N-1
E (Te PY'Tel=Tgl+ T Z (PTe)"PTgl=Te1+ Tel=1.
n=0 n=0
Now

Te f‘, (PTe)"PTe = (I - Te)P }1 (TeP)'Te

n=0

N+1

=P f‘, (Te-P)Y'Te — Y, (Te-P)'Te

n=0 ne=]
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N
=(P-1) Y (TeP)'Te + Te — (Ts P)" ' Tk.
n=0
Now (Te P)V"'Tef — 0 for every f € L by the first part. Let N — » to conclude
TEPE = (P - I) 2 (TE’P)"TE + TE.
n=0

References. The definition of Pr and its use for finding a o finite invariant
measure were suggested by P. Halmos [8]. We followed here Harris [9] for
Theorem 7.3. Theorem 7.4 was proved by S. Horowitz [11] and A. Brunel [1].
The notion of “‘special” sets was introduced in [17].

VIII. The Ornstein—-Métivier-Brunel Theorem

AssumpTION 8.1. The operator P is ergodic and conservative and E is a special
set for P.

Remark. If P is an ergodic Harris operator then, by Theorem 7.2, we may
choose E to be very close to X.

DerniTioN 8.1, § =37_(1/2""")TePt on L.(E, 34, Ay).
By the Corollary of Lemma 7.1, S1g = 1.

Lemma 8.1. Assume 8.1. If ACE and A\(A)>0 then S1, = 1z where
e=¢(A)>0.

PROOF. S1, = (1/2M)2).0TePila = (1/27)e(A)1e if N = N(A), by Defini-
tion 7.2.
From the lemma follows that

liminff S$"1adr1Z e(A)>0.

Here we deviate from our custom and quote, but not prove, theorem B of
chapter IV of [5], to conclude.
There exists a finite invariant measure 7, for S.

Now n = nTg and

=~ 1 -
0="I(TE—S)= [7) Z] i (TE+“'+TEPE 1)] (TE_TEPE),

thus by replacing 5 by the term in brackets we may and shall assume
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(*) n =nTe =nTePe =S and n is finite.

Put p =27 (PTe)" and recall Theorem 7.3.
(%) 0=p is o finite, uP=p and pTg=mn.

Let us improve Lemma 8.1.

LemMa 8.2. Assume 8.1. There exists a constant & > 0 such that if A C E and
AM(A)Z 1~ a then S1, 2 alg.

ProoF. Assume, to the contrary, that for each j = 2 we may findaset A; CE
with A(A;)Z1-1/2" but S14(x)<1/2" on the set B; with A,(B;)>0. Now
St A(A)=tsoif A =1, A then A,(A)>4 but S1.(x) =Sl (x)= 172 if
x € B;, which contradicts Lemma 8.

For the next few results we shall refer to the Harris decomposition of $” on
LAE, %1, Ay).

DeriniTioN 8.2. The Harris decomposition is denoted by
S"=T.+ U,
where T, is the maximal integral kernel and all operators are on L.(E, 21, A).
LemMma 8.3. Assume 8.1, then T(lg Z3a1e.

Proor. Let Kof(x)= [ f(y)A(dy) then, by Lemma 5.1 part (1), S A Ko is an
integral kernel dominated by S, thus

T\1e é(S A K())lE isg+f (1_g)d’\1

if0<g=1e Let A={x:g(x)=3NE. Then g =31, andon A, 1-g >3 s0
Tile =181, +1A(A). If L(A)Z a then Tilg = a/2, while if A,(A") < a then
M(A)z 1—«a and T\1 23514 Z3ale by Lemma 8.2.

LemMa 8.4. Assume 8.1, then Tol.(x)Z 3e(A)a le(x) outside of a fixed set
(independent of A) of measure zero.

Proor. By Lemma 5.5, we have at every point
TAla(x)Z T(S1)(x)z= e (A)T 1 (x).
Apply now Lemma 8.3.

LEMMA 8.5. Assume 8.1. If k. is the density of T- then k.>0 a.e. A°.
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PrOOF. Assume, to the contrary, that A*(F) >0 where F = {(x,y): kx(x,y) =
0}. Then A(F.)>0 (F. ={y: (x,y)E F}) for a set of x’s of positive measure.
Thus T,1r (x)=0 on a set of positive measure which contradicts Lemma 8.4.

Denote for x €E and y E E

fi(x)= A, ({z: kz(x,z)§%}> ,

g&(y)=AX ({z: kz(z,y)éi—}) )

Now

1= A(EXE)= j Mz kao(x, 2) > 0)Ai(dx)
so A ({z: kax,2)>0})=1 for almost all x. Thus fi(x)T 1 a.e. and similarly
g (y) 11 a.e. Hence:

Lemma 8.6. There exists an integer k such that the sets F = {x: f, (x) = 3/4}
and G ={y: g (y) = 3/4} have positive measures.

If x € F and y € G then

A({z: kz(x,z)<%}u{z: kz(z,y)<%}><%+é-ll=%.
Thus
A ({z: kz(x,z)éi}ﬂ{z: k;(z,y);%})>%

therefore
1
f kax, 2)ko(z, y)A(d2) Z 573 -

LEMMA 8.7. Assume 8.1. If ki, is the density of T, then kix,y)=
Ble(x)ls(y) where B >0.

Proor.
k4(x,y)zf kz(x,z)kg(z,y),\(dz);zikz it xEcFandy€G.

Lemma 8.8. Assume 8.1. Let 7 be the measure on 3, given by 1(A)=
Be (FYA (G N A) then for every 0=g € L.

S'g ;f gdr.
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Proor. S°g = ST.g = S(B [cgdAr:1¢) by Lemma 8.7. Now, by Lemma 8.1,
S1r= e(F)1s or §°g = Be(F) fcgdA, but [cgdr, = [ gdr.
We may use now the Corollary to Theorem 4.3.

TueorREM 8.9. Assume 8.1 and put Vf = [gfdu = [efdn (as defined in (*)
and (*x)) then

lim IS" - V]=0.
Moreover there exists an integer n such that
{f: f € L.(X), f supported on E andf fdu = 0} C Range(Ts - S").

Proor. We need to prove the second part only. Let |[$"— V| <1. The
operator T — V is a projection of L.(E) onto {f: f € L.(E) and [ fdu = 0} and
it commutes with S, thus the range of Tz — V is invariant under S and the norm
of 8" restricted to this range is smaller than 1. Thus Tz — S" is invertible on
{f: f€ LAE) and [ fdu = 0}.

Note now

Range(T: — S")C Range(T: — S):

TE_S"=(TE_S)(TE+S+"'+S"_I).
Also
Range(Te — S)C Range(Ts — TePe):

Te—-S= (TE - TEPE) 21 2_}71 (TE +eet TEPE_I)-
Finally, by Theorem 7.4,
Range(Tg — TePe) C Range (I — P).
Now if f € Range(I — P) then f = (I — P)h for some h € L. and

3 o] = k- PY =20k

Thus

THEOREM 8.10 (Ornstein—-Métivier~Brunel Theorem). Assume 8.1 and let p. be
the invariant o finite measure of P which is finite on E (as in (¥+)). If f € L.(X)
and is supported on E and [ fdu =0 then |Z._, P"f| = const <,
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References. Results similar to Lemma 8.8 (and previous lemmas) were
proved by Orey [18] and Neveu [17]. Theorem 8.10 was proved for random
walks by Ornstein [11]. Métivier extended this result to Harris operators in [14];
he did not use special sets but a more restrictive class. The general result was
proved by Brunel [1]. A very elegant proof, using the notion of quasicompact
operators, was given by Horowitz {12]. Another presentation is given in [2]. In
[7] Ghoussoub showed that the special sets are the largest class for which the
Theorem holds.
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